深入浅出深度学习:原理剖析与python实践

目录:

第1 部分 概要 1

1 绪论 2

1.1 人工智能、机器学习与深度学习的关系 3

1.1.1 人工智能——机器推理 4

1.1.2 机器学习——数据驱动的科学 5

1.1.3 深度学习——大脑的仿真 8

1.2 深度学习的发展历程 8

1.3 深度学习技术概述 10

1.3.1 从低层到高层的特征抽象 11

1.3.2 让网络变得更深 13

1.3.3 自动特征提取 14

1.4 深度学习框架 15

2 Theano 基础 19

2.1 符号变量 20

2.2 符号计算的抽象——符号计算图模型 23

2.3 函数 26

2.3.1 函数的定义 26

2.3.2 Logistic回归 27

2.3.3 函数的复制 29

2.4 条件表达式 31

2.5 循环 32

2.6 共享变量 39

2.7 配置 39

2.7.1 通过THEANO_FLAGS配置 40

2.7.2 通过. theanorc文件配置 41

2.8 常用的Debug技巧 42

2.9 小结 43

第2 部分 数学与机器学习基础篇 45

3 线性代数基础 46

3.1 标量、向量、矩阵和张量 46

3.2 矩阵初等变换 47

3.3 线性相关与向量空间 48

3.4 范数 49

3.4.1 向量范数 49

3.4.2 矩阵范数 53

3.5 特殊的矩阵与向量 56

3.6 特征值分解 57

3.7 奇异值分解 58

3.8 迹运算 60

3.9 样例:主成分分析 61

4 概率统计基础 64

4.1 样本空间与随机变量 65

4.2 概率分布与分布函数 65

4.3 一维随机变量 66

4.3.1 离散型随机变量和分布律 66

4.3.2 连续型随机变量和概率密度函数 67

4.4 多维随机变量 68

4.4.1 离散型二维随机变量和联合分布律 69

4.4.2 连续型二维随机变量和联合密度函数 69

4.5 边缘分布 70

4.6 条件分布与链式法则 71

4.6.1 条件概率 71

4.6.2 链式法则 73

4.7 多维随机变量的独立性分析 73

4.7.1 边缘独立 74

4.7.2 条件独立 74

4.8 数学期望、方差、协方差 75

4.8.1 数学期望 75

4.8.2 方差 76

4.8.3 协方差 76

4.8.4 协方差矩阵 78

4.9 信息论基础 81

4.9.1 信息熵 81

4.9.2 条件熵 83

4.9.3 互信息 84

4.9.4 相对熵与交叉熵 84

5 概率图模型 87

5.1 生成模型与判别模型 89

5.2 图论基础 90

5.2.1 图的结构 90

5.2.2 子图 91

5.2.3 路径、迹、环与拓扑排序 92

5.3 贝叶斯网络 95

5.3.1 因子分解 96

5.3.2 局部马尔科夫独立性断言 99

5.3.3 I-Map与因子分解 100

5.3.4 有效迹 103

5.3.5 D-分离与全局马尔科夫独立性 108

5.4 马尔科夫网络 108

5.4.1 势函数因子与参数化表示 109

5.4.2 马尔科夫独立性 111

5.5 变量消除 114

5.6 信念传播 116

5.6.1 聚类图 116

5.6.2 团树 120

5.6.3 由变量消除构建团树 123

5.7 MCMC采样原理 126

5.7.1 随机采样 127

5.7.2 随机过程与马尔科夫链 128

5.7.3 MCMC采样 132

5.7.4 Gibbs采样 134

5.8 参数学习 137

5.8.1 ...似然估计 137

5.8.2 期望...化算法 138

5.9 小结 140

6 机器学习基础 142

6.1 线性模型 143

6.1.1 线性回归 143

6.1.2 Logistic回归 148

6.1.3 广义的线性模型 150

6.2 支持向量机 151

6.2.1 。优间隔分类器 152

6.2.2 对偶问题 155

6.2.3 核函数 156

6.3 朴素贝叶斯 160

6.4 树模型 162

6.4.1 特征选择 163

6.4.2 剪枝策略 165

6.5 聚类 166

6.5.1 距离度量 167

6.5.2 层次聚类 168

6.5.3 K-means聚类 171

6.5.4 谱聚类 172

7 数值计算与。优化 177

7.1 无约束极小值的。优化条件 177

7.2 梯度下降 179

7.2.1 传统更新策略 181

7.2.2 动量更新策略 183

7.2.3 改进的动量更新策略 184

7.2.4 自适应梯度策略 187

7.3 共轭梯度 188

7.4 牛顿法 192

7.5 拟牛顿法 194

7.5.1 拟牛顿条件 194

7.5.2 DFP算法 195

7.5.3 BFGS算法 196

7.5.4 L-BFGS算法 197

7.6 约束。优化条件 200

第3 部分 理论与应用篇 205

8 前馈神经网络 206

8.1 生物神经元结构 207

8.2 人工神经元结构 208

8.3 单层感知机 209

8.4 多层感知机 212

8.5 激活函数 217

8.5.1 激活函数的作用 217

8.5.2 常用的激活函数 219

9 反向传播与梯度消失 225

9.1 经验风险。小化 227

9.2 梯度计算 228

9.2.1 输出层梯度 228

9.2.2 隐藏层梯度 230

9.2.3 参数梯度 234

9.3 反向传播 235

9.4 深度学习训练的难点 237

9.4.1 欠拟合——梯度消失 237

9.4.2 过拟合 240

10 自编码器及其相关模型 243

10.1 自编码器 243

10.2 降噪自编码器 245

10.3 栈式自编码器 247

10.4 稀疏编码器 250

10.5 应用:cifar10图像分类 254

11 玻尔兹曼机及其相关模型 258

11.1 玻尔兹曼机 258

11.2 能量模型 261

11.2.1 能量函数 261

11.2.2 从能量函数到势函数 262

11.2.3 从势函数到概率分布 263

11.3 推断 264

11.3.1 边缘分布 265

11.3.2 条件分布 267

11.4 学习 270

11.4.1 ...似然估计 271

11.4.2 对比散度 274

11.5 应用:个性化推荐 276

11.5.1 个性化推荐概述 276

11.5.2 个性化推荐架构与算法 279

11.5.3 RBM与协同过滤 285

12 递归神经网络 291

12.1 Elman递归神经网络 292

12.2 时间反向传播 295

12.3 长短时记忆网络 299

12.4 结构递归神经网络 302

12.5 应用:语言模型 308

12.5.1 N元统计模型 308

12.5.2 基于LSTM 构建语言模型 312

13 卷积神经网络 318

13.1 卷积运算 319

13.2 网络结构 320

13.3 卷积层 324

13.4 池化层 329

13.5 应用:文本分类 333

下载地址:https://pan.baidu.com/s/146o886mrtKxRPvaS4GzZQw

关注微信公众号获取提取码:

  输入:py88     获取提取码

深入浅出深度学习:原理剖析与python实践_黄安埠(著) pdf的更多相关文章

  1. 推荐《深入浅出深度学习原理剖析与python实践》PDF+代码

    <深入浅出深度学习原理剖析与Python实践>介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用:第二部分详细讲解了与深度学习 ...

  2. 《深入浅出深度学习:原理剖析与python实践》第八章前馈神经网络(笔记)

    8.1 生物神经元(BN)结构 1.人脑中有100亿-1000亿个神经元,每个神经元大约会和其他1万个神经元相连 2.细胞体:神经元的主体,细胞体=细胞核+细胞质+细胞膜,存在膜电位 3.树突:从细胞 ...

  3. 参考《深度学习原理与应用实践》中文PDF

    读国内关于深度学习的书籍,可以看看<深度学习原理与应用实践>,对深度学习原理的介绍比较简略(第3.4章共18页).只介绍了"神经网络"和"卷积神经网络&quo ...

  4. 学习《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

    入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就 ...

  5. 给深度学习入门者的Python快速教程

    给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_f ...

  6. 深度学习入门者的Python快速教程 - 基础篇

      5.1 Python简介 本章将介绍Python的最基本语法,以及一些和深度学习还有计算机视觉最相关的基本使用. 5.1.1 Python简史 Python是一门解释型的高级编程语言,特点是简单明 ...

  7. 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV

    这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...

  8. 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇

    始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入 ...

  9. 30个深度学习库:按Python、C++、Java、JavaScript、R等10种语言分类

    30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度 ...

随机推荐

  1. 精妙的SQL语句

      说明:复制表(只复制结构,源表名:a 新表名:b)select * into b from a where 1<>1 说明:拷贝表(拷贝数据,源表名:a 目标表名:b)insert i ...

  2. js清空数组

    js-清空array数组 两种实现方式: 1.splice:删除元素并添加新元素,直接对数组进行修改,返回含有被删除元素的数组. arrayObject.splice(index,howmany,el ...

  3. 常用的两种web单点登录SSO的实现原理

    单点登录SSO(Single Sign On)说得简单点就是在一个多系统共存的环境下,用户在一处登录后,就不用在其他系统中登录,也就是用户的一次登录能得到其他所有系统的信任.单点登录在大型网站里使用得 ...

  4. 简单理解php的socket编程【网摘】

    php的socket编程算是比较难以理解的东西吧,不过,我们只要理解socket几个函数之间的关系,以及它们所扮演的角色,那么理解起来应该不是很难了,在笔者看来,socket编程,其实就是建立一个网络 ...

  5. 开始编写Makefile

    1.Makefile 的编写规则一 目标列表:关联性列表 命令列表 目标列表:可以是多个以空格隔开多个目标文件 关联列表页称为先决条件:同样是用个或多个空格分开的目标文件 命令列表:用<tab& ...

  6. Gin-Go学习

    笔记一:Hello World https://www.cnblogs.com/tudaogaoyang/p/8056186.html 笔记二:Gin-Web框架 https://www.cnblog ...

  7. LayuiAdmin 单页版关闭当前页面tab的方式-图文

    需要关闭的时候 调用 parent.layui.admin.events.closeThisTabs() 即可执行当前页面的关闭 $.post("/index.php/WebAdmin/Wx ...

  8. RIP子网划分及扩展详解

  9. DB2 sqlCode-668

    客户端调用命令 CALL SYSPROC.ADMIN_CMD('reorg table tablename')

  10. snprintf用错了快10年…

    int snprintf(char *str, size_t size, const char *format, ...); 从用snprintf开始,size参数一直传的都是buff_size-1, ...