概率与期望

总结

老师上午几乎是在讲数学课,没有讲什么和\(OI\)有关的题目,所以我就做了一点笔记。

到了下午,老师讲完了有关知识点和经典模型,就开始讲例题了。前两道例题是以前就做过的,所以没有什么问题。后几道例题难度就有所提升了,老师共计讲了\(10\)到例题,有关笔记基本上都记了 ,但是区间翻转排序两题笔记有点缺漏,导致听挂了,还有Deep Dark Forest凸包两题可能在细节上还有一点问题。

有关解题策略,还可以看大佬的博客

知识点

大概的内容就是有关期望和概率的基础概念,重要公式和若干经典问题的解答,以及一些技巧和运用的方法,重要的几个内容如下:

\(1.\) \[\sum_{i=0}^nx^i=\frac{1-x^{n+1}}{1-x}\]
就是等比数列求和公式,只需将等式两边同乘分母化简即可证明。

\(2.\) \[\lim_{n->\infty}\sum_{i=0}^nx^i=\frac{1}{1-x}\tag{0<x<1}\]
利用极限思想即可得到。

\(3.\) \[E(X+Y)=E(X)+E(Y)\]
期望的线性性,对于任意随机变量\(X,Y\)成立,可以利用定义直接证明。

\(4.\) \[P(X=k)=P(X\leq k)-P(X
\leq k-1)\\P(X=k)=P(X\geq k) -P(X\geq k+1)\]
概率的前缀和,后缀和转换,可以用于推导化简。

\(5.\) 发生概率为\(p\)的事件期望在\(\frac{1}{p}\)次后发生。
证明:设随机变量\(X\)代表直到该事件发生时的次数,则有:
\[E(X)=\sum_{i}P(X=i)*i\\=\sum_{i} \left ( P(X\geq i)-P(X\geq i+1) \right )*i\\=\sum_{i=1}^{\infty}((1-p)^{i-1}-(1-p)^{i})*i\\=\sum_{i=0}^{\infty}(1-p)^i=\frac{1}{p}\]

\(6.\) \[E(X)=\sum_{i=1}^{\infty}P(X\geq i)\]
对于离散变量\(X\),可以证明如下:\[E(X)=\sum_{i=1}^{\infty}P(X=i)*i\\=\sum_{i=1}^{\infty}(P(X\geq i)-P(X\geq i+1))*i\\=\sum_{i=1}^{\infty}P(X\geq i)\]

对于经典问题的解答,可以参照这篇博客笔记

例题

例题感觉难度还是有的,也比较切合今天的知识点。但是老师讲的速度比较快,可能对题目理解还不是很透彻。在讲课时,做笔记还是很必要的,并且一定要跟上老师讲课的节奏,以防走神,如果有哪到题的笔记有问题,就先跳过,听懂当前的题,把问题留下来再解决。

以下是例题的简要题解:

\(1.\) 换教室:预处理两两教室之间的最短距离,考虑每一个教师是否申请,进行线性\(dp\)计算最小期望即可。

\(2.\) \(Deep\ Dark\ Forest\):利用公式\(6\)将期望转化为不等式概率求和的形式。然后枚举直径长度限制\(k\),用树形\(dp\)求概率即可。(状态:\(f[x][l]\)代表以\(x\)为根的子树中,最长链长度为\(l\)的概率)

\(3.\) 球染色:设\(f[i]\)代表当前有\(i\)个颜色为\(x\)的点,可以计算当前状态选取数对产生\(1\),\(0\),\(-1\)贡献的概率,化简方程线性递推即可。

\(4.\) 区间翻转:利用期望线性性转换,即求最后第\(i\)个点的取值期望。设\(f[j][0/1]\)代表第\(j\)次操作后,第\(i\)个位置为\(0/1\)的概率,设\(p_i\)代表随机一个区间,包含点\(i\)的概率。利用\(p_i\)来\(dp\)即可,需要矩阵乘法加速递推。

\(5.\) 凸包:先利用期望的线性性进行转换,同时利用点边转换(凸包上的点数等于凸包上的边数),即求边\((i,j)\)在凸包上的概率,同时也是期望,可以根据凸包边的性质来统计。

\(6.\) 单选错位:先利用期望的线性性进行转换,即求每一个位置的数抄错后正确的期望,发现可以直接表示。

\(7.\) \(kill\):先将题目等效转换,对每一个人一一处理,只选没死的人进行开枪操作。设\(f[i][j]\)代表还剩\(i\)个人,前面有\(j\)个人开了枪的概率,根据开枪次数计算概率转移即可。


『正睿OI 2019SC Day1』的更多相关文章

  1. 『正睿OI 2019SC Day8-Day17』

    于是就迎来\(10\)天的自闭考试了,每天写点小总结吧. Day8 第一天就很自闭啊,考题分别是数学题+建模题+图论. 前两道题都没有什么算法,但是难度还是有的,于是就做不太出来,特别是第一题.第二题 ...

  2. 『正睿OI 2019SC Day7』

    简单数论 质因子分解 素性测试 素性测试指的是对一个正整数是否为质数的判定,一般来说,素性测试有两种算法: \(1.\) 试除法,直接尝试枚举因子,时间复杂度\(O(\sqrt n)\). \(2.\ ...

  3. 『正睿OI 2019SC Day5』

    网络流 网络流的定义 一个流网络\(G=(V,E)\)为一张满足以下条件的有向图: 每一条边有一个非负容量,即对于任意\(E\)中的\((u,v)\) , 有\(c(u,v)\geq0\). 如果\( ...

  4. 『正睿OI 2019SC Day4』

    总结 今天是一场欢乐的\(ACM\)比赛,于是我队得到了全场倒数的好排名. 好吧,其实还是怪自己不能怪队友啦.对于\(ACM\),可能最主要的还是经验不足,导致比赛的时候有点紧张.虽然队友为了磕一道题 ...

  5. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  6. 『正睿OI 2019SC Day3』

    容斥原理 容斥原理指的是一种排重,补漏的计算思想,形式化的来说,我们有如下公式: \[\left | \bigcup_{i=1}^nS_i \right |=\sum_{i}|S_i|-\sum_{i ...

  7. 『正睿OI 2019SC Day2』

    分治 普通分治 普通分治是指针对序列或平面问题的分治算法. 思想 普通分治的思想是指将一个序列问题或平面问题通过某种划分方式划分为若干个子问题,直到子问题规模足够小,可以直接回答,再通过合并得到原问题 ...

  8. 正睿OI国庆day1

    正睿OI国庆day1 T1 \[ S_n=1*S_{n-1}+1*F_{n-1}+1*F_{n-2}+1*f_{n-1}+1*f_{n-2} \] \[ F_{n}=0*S_{n-1}+1*F_{n- ...

  9. 正睿OI DAY3 杂题选讲

    正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...

随机推荐

  1. android studio学习----gradle配置

    转载地址:http://blog.csdn.net/loongggdroid/article/details/47037413 1.gradle的简单介绍 Gradle是可以用于Android开发的新 ...

  2. qtp安装和使用

    QTP许可证密钥的破解步骤: 以前使用QTP9.2 使用此方法成功破解,现在本人使用的HP QuickTest Professional 11 英文版,也成功适用. 一.准备工作: 1. 由于注册码文 ...

  3. Java中的equals与==

    package demo; public class Test { public static void main(String[] args) { String str1 = new String( ...

  4. SPring boot jpa 封装查询条件

    最近使用spring data jpa做了两个项目,对于动态查询的不友好做了个类似hibernate的封装,记录也分享下 首先定义一个所有条件的容器,继承Specification /** * 定义一 ...

  5. C# 连接数据操作的时候抛异常,连接超时

    先说说我的业务.我在发送优惠券的时候,同时给6千多个会员发送优惠券,执行了update 和insert语句,这写语句都是通过字符串拼接而来的.update和insert语句加起来一共是一万多条语句.在 ...

  6. 1047--Remove All Adjacent Duplicates In String

    public class RemoveAllAdjacentDuplicatesInString { /* 解法一:栈 */ public String removeDuplicates(String ...

  7. Django框架(十二)-- Djang与Ajax

    一.什么是Ajax AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Javascript和XML”.即使用Javascript语言与服务器进行异步交互,传 ...

  8. Python的诞生和各种解释器

    一:Python的诞生 参考:https://www.jianshu.com/p/1cc1382e5e04   二:Python的各种解释器 参考:https://www.liaoxuefeng.co ...

  9. NOIp常用的算法

    24种NOIp常用的算法 https://blog.csdn.net/weixin_40676873/article/details/81166139 NOIP 算法总结(来自 啊哈磊的专栏) htt ...

  10. AMD SATA Download (解决win10 磁盘占用100%问题)

    需要下载的AMD SATA 驱动: 下载AMD SATA https://github.com/StoneIsDeveloper/UsefulTools/blob/master/AMD%20SATA/ ...