Generative Adversarial Network (GAN) - Pytorch版
import os
import torch
import torchvision
import torch.nn as nn
from torchvision import transforms
from torchvision.utils import save_image # 配置GPU或CPU设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 超参数设置
latent_size = 64
hidden_size = 256
image_size = 784
num_epochs = 200
batch_size = 100
sample_dir = 'samples' # Create a directory if not exists
if not os.path.exists(sample_dir):
os.makedirs(sample_dir) # Pytorch:transforms的二十二个方法:https://blog.csdn.net/weixin_38533896/article/details/86028509#10transformsNormalize_120
# 对Image数据按通道进行标准化,即先减均值,再除以标准差,注意是 hwc
transform = transforms.Compose([
transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
transforms.Normalize(mean=(0.5, 0.5, 0.5), # 3 for RGB channels
std=(0.5, 0.5, 0.5))]) # 下载数据,并指定转换形式transform
# MNIST dataset
mnist = torchvision.datasets.MNIST(root='./data/',
train=True,
transform=transform,
download=True)
# 数据加载,按照batch_size大小加载,并随机打乱
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=mnist,
batch_size=batch_size,
shuffle=True)
# 鉴别器
# Discriminator
D = nn.Sequential(
nn.Linear(image_size, hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(hidden_size, hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(hidden_size, 1),
nn.Sigmoid())
# 生成器
# Generator
G = nn.Sequential(
nn.Linear(latent_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, image_size),
nn.Tanh()) # GPU或CPU设置
# Device setting
D = D.to(device)
print(D)
# Sequential((0): Linear(in_features=784, out_features=256, bias=True)
# (1): LeakyReLU(negative_slope=0.2)
# (2): Linear(in_features=256, out_features=256, bias=True)
# (3): LeakyReLU(negative_slope=0.2)
# (4): Linear(in_features=256, out_features=1, bias=True)
# (5): Sigmoid())
G = G.to(device)
print(G)
# Sequential( (0): Linear(in_features=64, out_features=256, bias=True)
# (1): ReLU()
# (2): Linear(in_features=256, out_features=256, bias=True)
# (3): ReLU()
# (4): Linear(in_features=256, out_features=784, bias=True)
# (5): Tanh()) # 二值交叉熵损失函数和优化器设置
# Binary cross entropy loss and optimizer
criterion = nn.BCELoss()
# 优化器设置 ,并传入鉴别器与生成器模型参数和相应的学习率
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0002)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0002) # 规范化处理
def denorm(x):
out = (x + 1) / 2
return out.clamp(0, 1) # 将out张量每个元素的范围限制到区间 [min,max] # 清空上一步的残余更新参数值
def reset_grad():
d_optimizer.zero_grad() # 清空鉴别器的梯度器上一步的残余更新参数值
g_optimizer.zero_grad() # 清空生成器的梯度器上一步的残余更新参数值 # 开始训练
total_step = len(data_loader)
for epoch in range(num_epochs):
for i, (images, _) in enumerate(data_loader):
images = images.reshape(batch_size, -1).to(device) # 创建label
# Create the labels which are later used as input for the BCE loss
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device) # ================================================================== #
# 训练鉴别器 #
# ================================================================== #
# 使用真实图像计算二值交叉熵损失
# Compute BCE_Loss using real images where BCE_Loss(x, y): - y * log(D(x)) - (1-y) * log(1 - D(x))
# Second term of the loss is always zero since real_labels == 1
outputs = D(images)# 真图像输入给鉴别器,并产生鉴别器输出
d_loss_real = criterion(outputs, real_labels) # 计算由真图像输入给鉴别器产生的输出与真实的label间的二值交叉熵损失
real_score = outputs# 鉴别器输出真实图像score值 # Compute BCELoss using fake images
# First term of the loss is always zero since fake_labels == 0
z = torch.randn(batch_size, latent_size).to(device)# 随机生成假图像
fake_images = G(z)# 假图像输入给生成器,并产生生成器输出假值图
outputs = D(fake_images)# 生成器输出假值图给鉴别器鉴别,输出鉴别结果
d_loss_fake = criterion(outputs, fake_labels)# 由随机产生的假图像输入给生成器产生的假图,计算生成器生成的假图输入给鉴别器鉴别输出与假的标签间的二值交叉熵损失
fake_score = outputs# 鉴别器输出假图像score值 # 反向传播与优化
d_loss = d_loss_real + d_loss_fake#真图像输入给鉴别器产生的输出与真实的label间的二值交叉熵损失和假图输入给鉴别器鉴别输出与假的标签间的二值交叉熵损失
# 重置梯度求解器
reset_grad()
# 反向传播
d_loss.backward()
# 将参数更新值施加到鉴别器 model的parameters上
d_optimizer.step() # ================================================================== #
# 训练生成器 #
# ================================================================== #
# 计算假图像的损失
# Compute loss with fake images
z = torch.randn(batch_size, latent_size).to(device)# 随机生成假图像
fake_images = G(z)# 假图像输入给生成器,并产生生成器输出假值图
outputs = D(fake_images)# 生成器输出假值图给鉴别器鉴别,输出鉴别结果 # We train G to maximize log(D(G(z)) instead of minimizing log(1-D(G(z)))
# For the reason, see the last paragraph of section 3. https://arxiv.org/pdf/1406.2661.pdf
g_loss = criterion(outputs, real_labels)# 由随机产生的假图像输入给生成器产生的假图,计算生成器生成的假图输入给鉴别器鉴别输出与真的标签间的二值交叉熵损失 # 反向传播与优化
# 重置梯度求解器
reset_grad()
# 反向传播
g_loss.backward()
# 将参数更新值施加到生成器 model的parameters上
g_optimizer.step()
# 每迭代一定步骤,打印结果值
if (i + 1) % 200 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}'
.format(epoch, num_epochs, i + 1, total_step, d_loss.item(), g_loss.item(),
real_score.mean().item(), fake_score.mean().item()))
# 保存真图像
# Save real images
if (epoch + 1) == 1:
images = images.reshape(images.size(0), 1, 28, 28)
save_image(denorm(images), os.path.join(sample_dir, 'real_images.png')) # 保存假或采样图像
# Save sampled images
fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)
save_image(denorm(fake_images), os.path.join(sample_dir, 'fake_images-{}.png'.format(epoch + 1))) # 保存以训练好的生成器与鉴别器模型
# Save the model checkpoints
torch.save(G.state_dict(), 'G.ckpt')
torch.save(D.state_dict(), 'D.ckpt')
Generative Adversarial Network (GAN) - Pytorch版的更多相关文章
- GAN Generative Adversarial Network 生成式对抗网络-相关内容
参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...
- Face Aging with Conditional Generative Adversarial Network 论文笔记
Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28 Motivation: 本文是要根据最新的条件产 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...
- Speech Super Resolution Generative Adversarial Network
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...
- DeepPrivacy: A Generative Adversarial Network for Face Anonymization阅读笔记
DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf ...
- 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network 2016.10.23 摘要: ...
- 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network
Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
随机推荐
- Pytest权威教程16-经典xUnit风格的setup/teardown
目录 经典xUnit风格的setup/teardown 模块级别setup/teardown 类级别setup/teardown 方法和函数级别setup/teardown 返回: Pytest权威教 ...
- Android Studio—增删改查—登录功能
SQLite数据库的常用操作: create table if not exists 表名(字段1 类型(长度),字段2 类型(长度),...)// 建表 drop table if ex ...
- [Shell]MySql慢查询日志GetShell
通过开启慢查询日志,配置可解析日志文件GETSHELL. MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句. long_query_time的默认值 ...
- jquery中清空
jQuery("#map_bmmc").empty(); function qingkong(){ $("#form1").find(&qu ...
- Coupled和segregated【转载】
转载自:http://blog.sina.com.cn/s/blog_67873f6c0100ltq6.html 问题1: 我看中文帮组里说是'分离'的意思?我绝对翻译不太好,请问有更好的翻译吗? 和 ...
- SQL学习笔记(三)
左连接 格式:select * from 表1 left join 表2 on 表1.列=表2.列 例1:查询所有学生的成绩,包括没有成绩的学生. 例2:查询所有学生的成绩,包括没有成绩的学生,需要显 ...
- NoSql数据库Redis系列(2)——Redis数据类型
一.设计 Redis Key (一).分段设计法 使用冒号把 key 中要表达的多种含义分开表示,步骤如下: 1.把表名转化为 key 前缀 2.主键名(或其他常用于搜索的字段) 3.主键值 4.要存 ...
- selenium之 下拉选择框Select
今天总结下selenium的下拉选择框.我们通常会遇到两种下拉框,一种使用的是html的标签select,另一种是使用input标签做的假下拉框. 后者我们通常的处理方式与其他的元素类似,点击或使用J ...
- SPM(Software Project Management)课程感想
今天要说的是软件项目管理课程学习后的一些心得体会.这学期我选修了软件项目管理课程,进行了共8周的学习. 其实,进入大三后,我们开设了各种专业选修课,通过对各种课程的学习,我见识到了丰富多样的知识体 ...
- Visual Studio、.NET Framework、VC++、C#各个版本的对应关系
Visual Studio..NET Framework.VC++.C#各个版本的对应关系 Visual Studio版本 .NET Framework版本 内部版本 VC++版本 C#版本 Visu ...