Manthan Codefest 19 题解
这套题还是有点质量的吧 ……
A. XORinacci
傻叉签到题,因为异或的性质所以这个序列的循环节长度只有 \(3\) ……
B. Uniqueness
因为序列长度乃至数的种类都不超过 \(2000\),考虑先把序列离散化。
题意让我们求一个最短的区间满足如下性质,对于每一种数,其在此区间出现次数不小于在原序列中的出现次数减 \(1\)。
可以先前缀和求一下对于每种数,当前位置及之前的出现次数,和至少一共需要删掉多少个这种数,即在原序列中的出现次数减 \(1\),方便以后的计算。
然后双指针确定一个这个区间即可,因为支持$ O(n^2)$ 的算法,所以 \(for\) 每一种数暴力 \(Check\)。
C. Magic Grid
结论题,看到 \(n\) 是 \(4\) 的倍数就自然想到将网格拆成若干个 \(4 * 4\) 的网格来做,每一部分网格依然满足题意的性质,并且拼起来也使大网格满足题意性质。
结果发现 \(2 * 2\) 的网格即可满足性质…… 对于每一组连续的 \(4\) 个数,存在一种构造方法满足上述性质。
不明白就看代码吧,挺简单的。
D. Restore Permutation
一道傻叉线段树因为写错递归的函数名调了半个多小时…… 属实降智了……
一开始读错题,看成是 \(s_i\) 表示 \(i\) 之前满足 \(p_j < p_i\) 的数的个数,那这道题目的套路就很常见,从后向前推,最后一个数就是当前未选的数中的第 \(s_i + 1\) 个数。
而正确的题意可谓从这上面发展而来,\(s_i\) 表示 \(i\) 之前满足 \(p_j < p_i\) 的数值之和。相当于把上述题意中,一个数的贡献从 \(1\) 改为了其数值而已。这样,用线段树维护前缀和,每次在上面二分查应该到哪个位置,即当前的数,然后选了的数就单点修改为 \(0\) 来删除对前缀和的贡献。
至于一些细节,思路清晰的话试一下就出来了。
E. Let Them Slide
没来得及写,不过真的没想到只做 \(4\) 题也上分了……
容易发现每一行都是独立的,对每一列,我们只需要把每一行能对这个位置做的最大贡献加起来就好了,所以对每一行单独处理。
设 \(len\) 为当前行的序列长度,当 \(w > 2 * len\) 时,显然区间 \([len + 1,\ w - len]\) 是可以取到每一个数,包括空位置(贡献为 \(0\))的,对这一段区间可以直接加上 \(max(max\_num,\ 0)\),\(max\_num\) 为序列中最大值。
现在处理区间 \([1,\ len]\) 和 \([w - len + 1,\ w]\),画图总结,对于前者中的每一个位置 \(j\),能取到的序列中的数为 \([max(0,\ j - w + len),\ j]\),对于后者,为 \([j - w + len,\ min(j,\ len + 1)]\),那么贡献就是这段区间中的区间最大值。
注意这两段区间如果存在重叠部分不要重叠区间计两次贡献,至于区间最大值,用 \(st\) 表处理即可,至于贡献的统计可以随便用数据结构做。
F. Bits And Pieces
思路很巧妙,完全没思路…… 本没脑子选手的水平看来也就半斤八两,到此为止了……
考虑按位与的操作只会让二进制中的 1 变少,因此值域不会变大,可以对每一个数,统计其可以被与出哪些数,并让此数 \(x\) 对 \(cnt[x]\) 做出 \(1\) 的贡献。
巧妙之处在于,如果有两个数都可以通过与运算得到 \(x\),那让这两个数做按位与,就可以与出一个二进制上只会比 \(x\) 多出 \(1\) 而不会少的数,即 \(x\) 是其二进制的子集。换句话说,如果用它做或运算,那么至少能做出 \(x\) 所做的贡献。
这样,我们只想要知道有哪些数可以被序列中的两个数做与运算得到。
可以 \(Dfs\) 爆枚二进制子集来统计其可以被与出哪些数,这样每个数至多是 \(O(2^{20})\) 的。但是如果一个数已经处理过两次了,也就是说它及其它二进制的子集已经都能被某两个数来与出两次了,那么已经达到了我们的目的,就无需再处理了,所以总渐进时间复杂度是 \(O(n)\) 的。
我们要求的是当前数与后面某两个数按位或得到的最大值,就可以从上面 \(cnt[]\) 大于 \(2\) 的数中找,从高位到低位贪心地让 \(0\) 变成 \(1\),这里可以结合代码理解。
Manthan Codefest 19 题解的更多相关文章
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组 [Pro ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造 [Problem Descripti ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...
- Manthan, Codefest 19(Div. 1 + Div. 2)
传送门 A. XORinacci 签到. Code /* * Author: heyuhhh * Created Time: 2020/2/26 9:26:33 */ #include <ios ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) F. Bits And Pieces sosdp
F. Bits And Pieces 题面 You are given an array
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) G. Polygons 数论
G. Polygons Description You are given two integers
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) (1208F,1208G,1208H)
1208 F 大意: 给定序列$a$, 求$\text{$a_i$|$a_j$&$a_k$}(i<j<k)$的最大值 枚举$i$, 从高位到低位贪心, 那么问题就转化为给定$x$ ...
- Manthan, Codefest 19
目录 Contest Info Solutions A. XORinacci B. Uniqueness C. Magic Grid D. Restore Permutation E. Let The ...
- RMQ+差分处理(Let Them Slide)Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)
题意:https://codeforc.es/contest/1208/problem/E 现有n行w列的墙,每行有一排连续方块,一排方块可以左右连续滑动,且每个方块都有一个价值,第i 列的价值定义为 ...
随机推荐
- Jenkins自动发送邮件配置及定时构建
前言 在配置之前,我们需要安装好Jenkins,对于如何安装不在赘述,看我之前一篇安装教程(或者找度娘,教程很多).接下来我们开始详细讲解build运行完成后自动发送邮件和定时自动构建build 系统 ...
- pywinauto教程2
一.环境安装 1.命令行安装方法 pip install pywinauto==0.6.7 2.手动安装方法 安装包下载链接:pyWin32: python调用windows api的库https:/ ...
- 移动端js触摸touch详解(附带案例源码)
移动端触摸滑动原理详解案例,实现过程通过添加DOM标签的触摸事件监听,并计算触摸距离,通过距离坐标计算触摸角度,最后通过触摸角度去判断往哪个方向触摸的. 触摸的事件列表 触摸的4个事件: touchs ...
- idea 项目在一般模式下可以正常启动,在debug模式下无法启动,像是卡住了的感觉
项目一般模式下可以启动,debug模式下就是启动不了,后经过排查发现打的有断点,断点取消在重启立马就可以啦. Method breakpoints may dramatically slow down ...
- React及Nextjs相关知识点小结
React及Nextjs知识点小结 函数式组件和类组件区别是什么 1.函数式组件是用于创建无状态的组件,组件不会被实例化,无法访问this中的对象,无法访问生命周期方法,是无副作用的,相比于类组件函数 ...
- 机器学习(十一)-------- 异常检测(Anomaly Detection)
异常检测(Anomaly Detection) 给定数据集
- 拒绝CPU挖矿矿工有责
长期以来CPU挖矿给挖矿行业带来持久的负面影响,因为CPU是电脑的核心设备,一挖矿就干不了别的了,大家是否可以达成共识拒绝CPU挖矿? 显卡挖矿刚好构建在不影响大众的日常工作生活对电脑的需求之上,家用 ...
- centos 7 防火墙相关操作
centos 7 防火墙相关操作 CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙. 1.关闭firewall: systemctl stop firewal ...
- java中设置session过期时间
Web容器 apache-tomcat-8.0.26\conf\web.xml中设置 <session-config> <!-- 时间单位为分钟 --> <session ...
- 使用Composer安装阿里云短信失败
安装步骤 请参考以下步骤,使用Composer安装依赖. 如果在您的系统上全局安装Composer,您可以在项目目录中运行以下内容,将 Alibaba Cloud Client for PHP 添加为 ...