2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过。。。

应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条“黄金公式”,就会找各种理由放弃,看不懂呀。。。但是研究lidar定位需要以此为基础,故立志掌握,然后集中精力看了一天,我发现我居然看懂了。。。作为白巧克力的忠实粉,所以果断先攻读Ta关于kalman的两篇blog,照着第一篇blog的公式推导,虽然没全部推出来,但是对5条公式的来源大致了解了,然后跑了第二篇blog的matlab实例,对照5条公式,感觉明白了什么。。。然后又接着看了授之以渔老师的blog,跑了62楼的matlab代码(源码重复了一遍,删除一半),自己又尝试将K值改为常数并调节常数K的大小(0~1之间),看了效果,然后觉得终于理解了kalman滤波,详细的不赘述,只把自己认为的关键的点Mark下来:

1.所谓kalman滤波本质就是加权信息融合,跟freescale两轮车的互补滤波原理是一样的,即利用两种信息(信息1的毛刺大但是无漂移,而信息2的毛刺小但是漂移严重(类似于无反馈的开环系统以及没有闭环检测的Odometry))之间的偏差error来周期性地消除信息2的漂移,以此来实现信息融合,一般为:

信息2 = 信息2 + K * (信息1 - 信息2)

其中,K就是加权的权重,kalman滤波与互补滤波的不同体现在:

1)权重K不是固定值,在每一次迭代中都由复杂的公式推导计算而来,相较于互补滤波,其权重不用人工调节而且根据黄金公式计算的权重K还是最优权重,kalman的牛逼之处一方面就体现在这个K的计算上

2)互补滤波融合的都是来自传感器的信息(最起码我们当年比赛时是这样的),例如陀螺仪和加速度计的值;而kalman滤波可以通过对系统建立数学模型(状态方程)得出一种被融合的信息,即预测值;另一个被融合的信息就是传感器获得的原始信息,即观测值,一般有较大毛刺,噪声严重(但是通过系统模型的状态方程求信息2的过程,跟陀螺仪积分求信息2的过程,很相似)。那么问题来了,kalman怎么融合两种传感器的信息,没有数学模型,参数A,B,C怎么求?容我我再研究研究。。。//TODO

2.K值(0~1)与预测值协方差的大小正相关,协方差P越小,说明预测值的不确定度越小,越准确,最终结果就偏向预测值多一些,反之亦然。PS,将两位大大blog中代码K值改为常数后,在0~1的范围内调节其值可以很直观的验证K值的作用。

3.按照“授之以渔”公式里的参数来说,整个kalman的参数一共A,B,C,Q,R,其中A,B,C是系统数学模型的参数,Q和R分别是系统和测量噪声的方差,其值越大说明系统预测或测量就相应地越不靠谱。

4.“授之以渔”的blog中将白巧克力提的预测值和估计值用了一个符号代替,并且统称为估计值,所以两位大大的blog中的黄金公式好像不大一样,我又查了查其他资料,好像两种说法都有,再看看,这两种说法其实是一个意思,总结一下——“授之以渔”中更新之前的估计值和对应的协方差,就是白巧克力说的“预测值”以及“预测值和真实值之间的协方差”。

-------------------------------------------------------- 分割线 --------------------------------------------------------

不查不知道,一查吓一跳,上文中的TODO,居然是多传感器信息融合的知识,目前的任务不涉及多传感器信息融合,先放着吧。。。

kalman滤波原理的更多相关文章

  1. kalman滤波

    kalman滤波原理(通俗易懂) 1. 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人 ...

  2. 理解Kalman滤波的使用

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  3. Kalman滤波器原理和实现

    Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为 ...

  4. 终于理解kalman滤波

    2017拜拜啦,怎么过元旦呢?当然是果断呆实验室过... 应该是大二的时候首次听说kalman,一直到今天早上,我一看到其5条"黄金公式",就会找各种理由放弃,看不懂呀...但是研 ...

  5. 目标跟踪之卡尔曼滤波---理解Kalman滤波的使用预测

    Kalman滤波简介 Kalman滤波是一种线性滤波与预测方法,原文为:A New Approach to Linear Filtering and Prediction Problems.文章推导很 ...

  6. 【滤波】标量Kalman滤波的过程分析和证明及C实现

    摘要: 标量Kalman滤波的过程分析和证明及C实现,希望能够帮助入门的小白,同时得到各位高手的指教.并不涉及其他Kalman滤波方法. 本文主要参考自<A Introduction to th ...

  7. (二). 细说Kalman滤波:The Kalman Filter

    本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...

  8. 透过表象看本质!?之三——Kalman滤波

    数据拟合能够估计出数据变化的趋势,另外一个同等重要的应用是如何利用这一趋势,预测下一时刻数据可能的值.通俗点儿说,你观察苍蝇(蚊子,蜜蜂)飞了几秒,你也许会想“它下一个时刻可能在哪儿”,“呈现出什么样 ...

  9. Kalman滤波学习

    两个过程: 预测过程和更新过程 1.基本原理 2.IMU应用Kalman滤波求角速度. https://github.com/jjundot/MPU6050_Kalman

随机推荐

  1. Springboot自动化部署到docker以及logback按天生成日志

    Dockerfile FROM java:8 VOLUME /tmp ADD maven/sms-0.0.1-SNAPSHOT.jar app.jar RUN sh -c 'touch /app.ja ...

  2. getsockopt套接口选项

    1. getsockopt int getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen); i ...

  3. Vue.js学习-组件注册与使用

    Vue.js学习文档 地址:https://cn.vuejs.org/v2/guide/ 关于自定义组件注册: 建议将<script></script>放在body标签之后 H ...

  4. go build -tags 的使用

    go build 使用tag来实现编译不同的文件 go-tooling-workshop 中关于go build的讲解可以了解到go bulid的一些用法,这篇文章最后要求实现一个根据go bulid ...

  5. JAVA构造器,重载与重写

    1. java构造器 构造器也叫构造方法(constructor), 用于对象初始化. 构造器是一个创建对象时被自动创建的特殊方法,目的是对象的初始化. 构造器 的名称与类的名称一致. JAVA通过n ...

  6. NumPy简单入门教程

    # NumPy简单入门教程 NumPy是Python中的一个运算速度非常快的一个数学库,它非常重视数组.它允许你在Python中进行向量和矩阵计算,并且由于许多底层函数实际上是用C编写的,因此你可以体 ...

  7. pandas的pivot_table

    参考文献: [1]pivot_table

  8. C#多线程编程中的锁系统

    C#多线程编程中的锁系统(二) 上章主要讲排他锁的直接使用方式.但实际当中全部都用锁又太浪费了,或者排他锁粒度太大了. 这一次我们说说升级锁和原子操作. 目录 1:volatile 2:  Inter ...

  9. Elasticsearch 中的 ignore_above

    检索超过ignore_above设定长度的字段后,无法返回结果

  10. Does Swift support aspect oriented programming?

    The foundation of Aspect Oriented Programming is the intercept pattern. We start with a crosscutting ...