函数周期性

前面我们学习过函数的周期性的给出方式:

\(f(x+a)=f(x)\) \(\hspace{2cm}\) \(T=a\)

\(f(x+a)=-f(x)\) \(\hspace{2cm}\) \(T=2a\)

推导:\(f(x+2a)=f[(x+a)+a]=-f(x+a)=- - f(x)=f(x)\),所以\(T=2a\)

\(f(x+a)=\cfrac{k}{f(x)}(k\ne 0)\) \(\hspace{2cm}\) \(T=2a\)

推导:\(f(x+2a)=f[(x+a)+a]=\cfrac{k}{f(x+a)}=\cfrac{k}{\frac{k}{f(x)}}=f(x)\),所以\(T=2a\)

\(f(x+2)=f(x+1)-f(x)\) \(\hspace{1cm}\) \(T=6\)

推导:\(f(x+1)=f(x)+f(x-1)\),两式相减得到,\(f(x+2)=-f(x-1)\),从而得到\(f(x+3)=-f(x)\),所以\(T=6\)

数列周期性

我们经常强调数列是个特殊的函数,\(a_n=f(n)\),那么借助上面的推导你能很轻松的得出以下的结论吗?

\(a_{n+3}=a_n\) \(\hspace{2cm}\) \(T=6\)

\(a_{n+3}=-a_n\) \(\hspace{2cm}\) \(T=6\)

\(a_{n+3}=\cfrac{k}{a_n}\) \(\hspace{2cm}\) \(T=6\)

\(a_{n+2}=a_{n+1}-a_n\) \(\hspace{2cm}\) \(T=6\)

【提示】表达式\(a_{n+3}=-a_n\)可以改写为\(f(n+3)=-f(n)\),你能看出怎么推导吗?

再次理解:数列是特殊的函数吗?

从$a_n=f(n)$的角度理解数列中的表达式$a_{n+1}=\frac{k}{a_n}$的更多相关文章

  1. IL角度理解C#中字段,属性与方法的区别

    IL角度理解C#中字段,属性与方法的区别 1.字段,属性与方法的区别 字段的本质是变量,直接在类或者结构体中声明.类或者结构体中会有实例字段,静态字段等(静态字段可实现内存共享功能,比如数学上的pi就 ...

  2. 用自然语言的角度理解JavaScript中的this关键字

    转自:http://blog.leapoahead.com/2015/08/31/understanding-js-this-keyword/ 在编写JavaScript应用的时候,我们经常会使用th ...

  3. 从编译器角度理解C++中的引用和指针

    欲分析指针和引用,则要分析变量名和地址之间的关系(不管你理解还是不理解,无论你是从老师那里听到的,还是网上看到的,应该都知道两句话:1. 指针就是地址,2.引用就是给变量起个别名) 所以我们就要来分析 ...

  4. 从观察者设计模式的角度理解Zookeeper中的Watcher

    前面关于Zookeeper提供的API中,可以观察到大部分接口参数似乎都是用了Wathcerz这个接口.这个在观察者模式中略有涉及,本文重点分析从观察者模式的角度分析该接口. 首先上该接口的UML图: ...

  5. 从tcp原理角度理解Broken pipe和Connection reset by peer的区别

    从tcp原理角度理解Broken pipe和Connection reset by peer的区别 http://lovestblog.cn/blog/2014/05/20/tcp-broken-pi ...

  6. 转:如何学习SQL(第二部分:从关系角度理解SQL)

    转自:http://blog.163.com/mig3719@126/blog/static/285720652010950825538/ 6. 从关系角度理解SQL 6.1. 关系和表 众所周知,我 ...

  7. 从npm 角度理解 mvn 的 pom.xml

    从npm 角度理解 mvn 的 pom.xml pom -- project object model. 用于描述项目的配置: 基础说明 依赖 如何构建运行 类似 node.js 的 package. ...

  8. 以吃货的角度去理解云计算中On-Premise、IaaS、PaaS和SaaS

    了解云计算的一定都听过四个“高大上”的概念:On-Premise(本地部署),IaaS(基础设施及服务).PaaS(平台即服务)和SaaS(软件即服务),这几个术语并不好理解.不过,如果你是个吃货,还 ...

  9. 从极大似然估计的角度理解深度学习中loss函数

    从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于 ...

随机推荐

  1. 利用mysql的LOAD DATA INFILE的功能读取客户端文件

    前言:今天在浏览某知论坛时,看到某大佬在渗透过程中使用伪造的MySQL服务端读取客户端文件,此大佬在利用过程中描述得不是很详细,作为小白的我看不懂啊,由此产生了此篇文章. 某大佬文章:https:// ...

  2. [转帖]银河麒麟Kydroid 2.0全新发布:原生支持海量安卓APP

    银河麒麟Kydroid 2.0全新发布:原生支持海量安卓APP https://news.cnblogs.com/n/652299/将手机操作系统 转移到 桌面 跟chromebook 类似的策略吧 ...

  3. 第十九节:Asp.Net Core WebApi基础总结和请求方式

    一. 基础总结 1.Restful服务改造 Core下的WebApi默认也是Restful格式服务,即通过请求方式(Get,post,put,delete)来区分请求哪个方法,请求的URL中不需要写方 ...

  4. 集成Spring-Boot与gRPC,grpc-spring-boot-starter

    项目地址:grpc-spring-boot-starter grpc是一个出身名门的RPC框架,性能高,灵活度高,支持多语言. 支持多语言,如果你的项目在使用多种语言做开发,非常推荐使用. 作为Jav ...

  5. mysql备份、还原数据库(命令行)

    这里记录下MySQL如何通过命令行备份和还原数据库. 简单的三个步骤 方法很简单,可以分为三个步骤: 1.打开cmd控制台(命令行). 2.输入相应命令完成备份还原操作. 3.关闭cmd控制台. 就和 ...

  6. tornado6与python3.7,异步新姿势

    废话不多说,直接上代码 __auth__ = "aleimu" __doc__ = "学习tornado6.0+ 版本与python3.7+" import t ...

  7. 使用kibana给不同的用户创建不同的space

    Elastic安全机制 在很多的情况下,出于安全的原因,我们需要对不同的Kibana用户分配不同的用户权限,这样使得他们之间不能互相访问彼此的资源,同 时他们也应该对不同的索引拥有不同的权限,比如读, ...

  8. 2019-11-29-win10-uwp-手把手教你使用-asp-dotnet-core-做-cs-程序

    原文:2019-11-29-win10-uwp-手把手教你使用-asp-dotnet-core-做-cs-程序 title author date CreateTime categories win1 ...

  9. git操作:查看分支、删除本地分支和远程分支

    1.查看本地分支:git branch 2.查看远程分支:git branch -r 或 git branch --remote 3.查看本地和远程的所有分支:git branch -a 4.删除本地 ...

  10. File "tesserocr.pyx", line 2443, in tesserocr._tesserocr.image_to_text RuntimeError: Failed to in...

    将Tesseract-OCR安装目录下的tessdata文件夹复制到Python解释器目录下就可以了