Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 
 
题意:输入A,B  求A^B的所有因子之和
 
思路: 首先求一个数的所有因子之和,我们就可以使用我们的唯一分解定理
(1+p1^1+p1^2+p1^3...p1^n)*(1+p2^1.....p2^n)*...*(1+pn^1+....+pn^n)
然后每一个括号里面我们可以用一个等比数列公式来求得 
a1*(1-q^n)/(1-q)    
不过既然我们要用除法,那我们为了保证精确度肯定要求逆元,还有求q^n的时候,因为范围比较大,你就要使用快速幂求得
这也说了,这是一个数的所有因子之和,
题目所求得是   A^B的所有因子之和,所以你要想想,因为数据比较大所以我们不能直接求解,这样取模容易丢失精度
运用算术基本原理  4^6=(2^2) ^6=2^12
所以可以直接算出素因子时直接个数乘以幂数即可
 
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define mod 9901
#define MAX 1001
using namespace std;
typedef long long ll;
int cnt;
vector<ll> prime;
vector<ll> times;
ll qpow(ll a,ll b)//快速幂加快求幂数
{
ll ans=;
while(b)
{
if(b&) ans=(ans*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ans;
}
void divide(ll n) {//求出n里所有的素数银子
for(ll i=;i*i<=n;++i) {
if(n%i==) {
prime.push_back(i);ll cnt=;
while(n%i==) {n/=i;++cnt;}
times.push_back(cnt);
}
}
if(n>) {prime.push_back(n);times.push_back();}
}
int main()
{
ll a,b;
scanf("%lld%lld",&a,&b);
divide(a);
ll ans=;
for(int i=,end=prime.size();i<end;++i) {
times[i]*=b;//乘了括号外的乘方
if((prime[i]-)%mod==) ans=ans*(times[i]+)%mod;//当底数为1时,就是乘以项数
else ans=ans*((qpow(prime[i],times[i]+)-+mod)*qpow(prime[i]-,mod-)%mod)%mod;//等比数列公式
}
printf("%lld\n",ans);
return ;
}

POJ - 1845 G - Sumdiv (唯一分解定理)的更多相关文章

  1. 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)

    [POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...

  2. 【简●解】POJ 1845 【Sumdiv】

    POJ 1845 [Sumdiv] [题目大意] 给定\(A\)和\(B\),求\(A^B\)的所有约数之和,对\(9901\)取模. (对于全部数据,\(0<= A <= B <= ...

  3. POJ 1845:Sumdiv 快速幂+逆元

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 Descripti ...

  4. 【POJ 1845】 Sumdiv

    [题目链接] 点击打开链接 [算法] 不妨先将A分解质因数 A = p1^q1p2^p2p3^p3..pn^qn 那么,A^B = p1^q1Bp2^q2B...pn^qnB 根据约数和定理,A^B的 ...

  5. 【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂

    (题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 ...

  6. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  7. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  9. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

随机推荐

  1. LeetCode--007--整数反转(java)

    给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321  示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出 ...

  2. hdu-4080 Stammering Aliens 字符串hash 模板题

    http://acm.hdu.edu.cn/showproblem.php?pid=4080 求出现次数大于等于n的最长串. #include<iostream> #include< ...

  3. Elasticsearch SQL

    es sql是一个X-pack组件 ,允许对es执行类似sql的查询,可以将Elasticsearch SQL理解为一个编译器,既能理解es,又能理解sql.可以通过利用es,实施大规模实时读取和处理 ...

  4. ModelViewSet 视图集 实现接口

    一.创建项目 1.创建 项目 : django-admin startprojet drf 2. 创建 两个app   ------ app1 ,book python manage.py start ...

  5. 2017.6.5项目总结(移动端touch事件)

    event.stopPropagation()  该方法将停止事件的传播,阻止它被分派到其他Document节点.在时间传播的任何阶段都可以调用它,注意,虽然该方法不能阻止同一个Document节点上 ...

  6. 启动adb devices,报adb已停止工作

    1.winddows下,一般是由于adb默认的”5037“被其他应用占用导致的(手机助手或者360居多) 2.cmd 下 netstat -ano |find "5037"查找占用 ...

  7. Git冲突:commit your changes or stash them before you can merge.

    用git pull来更新代码的时候,遇到了下面的问题: error: Your local changes to the following files would be overwritten by ...

  8. 压力测试之ab命令

    网站性能压力测试是服务器网站性能调优过程中必不可缺少的一环.只有让服务器处在高压情况下,才能真正体现出软件.硬件等各种设置不当所暴露出的问题. ab是apache自带的压力测试工具.ab非常实用,它不 ...

  9. 在Eclipse上安装Activiti插件

    然后点击: Help ---> Install new SoftWare 然后在点击Add添加新的: 我们在Name上 写上 Activiti BPMN 2.0 designer Locatio ...

  10. Hadoop--单点故障修复

    nameNode单点故障修复 1.启动虚拟机,启动集群  此时我们将主机hadoop1关机(断掉主机),开始抢救: 1.使用 秘书(secondaryNameNode),成功率不是100%  (这里我 ...