POJ - 1845 G - Sumdiv (唯一分解定理)
Input
Output
Sample Input
2 3
Sample Output
15
Hint
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define mod 9901
#define MAX 1001
using namespace std;
typedef long long ll;
int cnt;
vector<ll> prime;
vector<ll> times;
ll qpow(ll a,ll b)//快速幂加快求幂数
{
ll ans=;
while(b)
{
if(b&) ans=(ans*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ans;
}
void divide(ll n) {//求出n里所有的素数银子
for(ll i=;i*i<=n;++i) {
if(n%i==) {
prime.push_back(i);ll cnt=;
while(n%i==) {n/=i;++cnt;}
times.push_back(cnt);
}
}
if(n>) {prime.push_back(n);times.push_back();}
}
int main()
{
ll a,b;
scanf("%lld%lld",&a,&b);
divide(a);
ll ans=;
for(int i=,end=prime.size();i<end;++i) {
times[i]*=b;//乘了括号外的乘方
if((prime[i]-)%mod==) ans=ans*(times[i]+)%mod;//当底数为1时,就是乘以项数
else ans=ans*((qpow(prime[i],times[i]+)-+mod)*qpow(prime[i]-,mod-)%mod)%mod;//等比数列公式
}
printf("%lld\n",ans);
return ;
}
POJ - 1845 G - Sumdiv (唯一分解定理)的更多相关文章
- 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分 整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...
- 【简●解】POJ 1845 【Sumdiv】
POJ 1845 [Sumdiv] [题目大意] 给定\(A\)和\(B\),求\(A^B\)的所有约数之和,对\(9901\)取模. (对于全部数据,\(0<= A <= B <= ...
- POJ 1845:Sumdiv 快速幂+逆元
Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16466 Accepted: 4101 Descripti ...
- 【POJ 1845】 Sumdiv
[题目链接] 点击打开链接 [算法] 不妨先将A分解质因数 A = p1^q1p2^p2p3^p3..pn^qn 那么,A^B = p1^q1Bp2^q2B...pn^qnB 根据约数和定理,A^B的 ...
- 【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂
(题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 ...
- POJ 1845 Sumdiv (整数唯一分解定理)
题目链接 Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25841 Accepted: 6382 Desc ...
- POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)
Sumdiv Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
随机推荐
- LeetCode--007--整数反转(java)
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转. 示例 1: 输入: 123 输出: 321 示例 2: 输入: -123 输出: -321 示例 3: 输入: 120 输出 ...
- hdu-4080 Stammering Aliens 字符串hash 模板题
http://acm.hdu.edu.cn/showproblem.php?pid=4080 求出现次数大于等于n的最长串. #include<iostream> #include< ...
- Elasticsearch SQL
es sql是一个X-pack组件 ,允许对es执行类似sql的查询,可以将Elasticsearch SQL理解为一个编译器,既能理解es,又能理解sql.可以通过利用es,实施大规模实时读取和处理 ...
- ModelViewSet 视图集 实现接口
一.创建项目 1.创建 项目 : django-admin startprojet drf 2. 创建 两个app ------ app1 ,book python manage.py start ...
- 2017.6.5项目总结(移动端touch事件)
event.stopPropagation() 该方法将停止事件的传播,阻止它被分派到其他Document节点.在时间传播的任何阶段都可以调用它,注意,虽然该方法不能阻止同一个Document节点上 ...
- 启动adb devices,报adb已停止工作
1.winddows下,一般是由于adb默认的”5037“被其他应用占用导致的(手机助手或者360居多) 2.cmd 下 netstat -ano |find "5037"查找占用 ...
- Git冲突:commit your changes or stash them before you can merge.
用git pull来更新代码的时候,遇到了下面的问题: error: Your local changes to the following files would be overwritten by ...
- 压力测试之ab命令
网站性能压力测试是服务器网站性能调优过程中必不可缺少的一环.只有让服务器处在高压情况下,才能真正体现出软件.硬件等各种设置不当所暴露出的问题. ab是apache自带的压力测试工具.ab非常实用,它不 ...
- 在Eclipse上安装Activiti插件
然后点击: Help ---> Install new SoftWare 然后在点击Add添加新的: 我们在Name上 写上 Activiti BPMN 2.0 designer Locatio ...
- Hadoop--单点故障修复
nameNode单点故障修复 1.启动虚拟机,启动集群 此时我们将主机hadoop1关机(断掉主机),开始抢救: 1.使用 秘书(secondaryNameNode),成功率不是100% (这里我 ...