<Parquet><Physical Properties><Best practice><With impala>
Parquet
- Parquet is a columnar storage format for Hadoop.
- Parquet is designed to make the advantages of compressed, efficient colunmar data representation available to any project in the Hadoop ecosystem.
Physical Properties
- Some table storage formats provide parameters for enabling or disabling features and adjusting physical parameters.
- Now, parquet file provides the following physical properties.
- parquet.block.size: The block size is the size of a row group being buffered in memory. This limits the memory usage when writing. Larger values will improve the I/O when reading but consume more memory when writing. Default size is 134217728 bytes (= 128 * 1024 * 1024).
- parquet.page.size: The page size if for compression. When reading, each page is the smallest unit that must be read fully to access a single record. If the value is too small, the compression will deteriorate. Default size is 1048576 bytes (= 1 * 1024 * 1024).
- parquet.compression: The compression algorithm used to compress pages. It should be one of uncompressed, snappy, gzip, lzo. Default is uncompressed.
- parquet.enable.dictionary: The boolean value is to enable/disable dictionary encoding. It should be one of either true or false. Default is true.
Parquet Row Group Size
Row Group
- Even though Parquet is a column-orientied format, the largest sections of data are groups of row data rows.
- Records are organized into row groups so that the file is splittable and each split contains complete records.
- Here’s a simple picture of how data is stored for a simple schema with columns A, in green, and B, in blue:
- Why row groups? --> If the entire file were organized by columns then the underlying HDFS blocks would contain just a column or two of each record. Reassembling those records to process them would require shuffling almost all of the data around to the right place. As below:
- There is another benefit to organizing data into row groups: memory consumption. Before Parquet can write the first data value in column B, it needs to write the last value of column A. All column-oriented formas need to buffer record data in memory until those records are written all at once.
- You can control row group size by setting parquet.block.size, in bytes(default: 128MB). Parquet buffers data in its final encoded and compressed form, which uses less memory and means that the amount of buffered data is the same sa the row group size on disk.
- That makes the row group size the most important setting. It controls both:
- The amount of memory consumed for each open Parquet file, and
- The layout of column data on disk.
The row group setting is a trade-off between these two. It is generally better to organize data into larger contiguous column chunks to get better I/O performance, but this comes at the cost of using more memory.
Column Chunks
- That leads to next level down in the Parquet file: column chunks.
- Row groups are divided into column chunkds. The benefits of Parquet come from this organization
- Stroing data by column lets Parquet use type-specific encodings and then compression to get more values in fewer bytes when writing, and skip data for columns u don's need when reading.
pics here - The total row group size is divided between the column chuhnks. Column chunk sizes also vary widely depending on how densely Parquet can store the values, so the portion used for each column is ususlly skewed.
Recommendations
- There’s no magic answer for setting the row group size, but this does all lead to a few best practices:
Know ur memory limits
- Total memory for writes is approximately the row group size times the number of open files. If this is too high, then processes die with OutOfMemoryExceptions.
- On the read side, memory consumption can be less by ingoring some columns, but this will usually still require half, a third, or some other constant times ur row group size.
Test with ur data
- Write a file or two using the defaults and use parquet-tools to see the size distributions for columns in ur data. Then, try to pick a value that puts the majority of those columns at a few megabytes in each row group.
Align with Hdfs Blocks
- Make sure some whole number of row groups make apprioxmately one Hdfs block. Each row group must be processed by a single task, so row groups larger than the HDFS block size will read a lot of data remotely. Row groups that spill over into adjacent blocks will have the same problem.
Using Parquet Tables in Impala
- Impala can create tables that use parquet data files, insert data into those tables, convert the data into Parquet format, and query Parquet data files produced by Impala or other components.
- The only syntax required is the STORED AS PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize the Parquet format automatically.
Insert
- Avoiding using the INSERT ... VALUES syntax, or partitioning the table at too granular a level, if that would produce a large number of small files that cannot use Parquet optimizations for large data chunks.
- Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a memory buffer to hold the data before it is written.
- Such inserts can also exceed HDFS limits on simultaneous open files, because each node could potentially write to a separate data file for each partition, all at the same time.
- If capacity problems still occur, consider splitting insert operations into one INSERT statement per partition.
Query
- Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently, Impala does not support RLE_DICTIONARY encoding.
FYI
<Parquet><Physical Properties><Best practice><With impala>的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- [转]C#使用 Salt + Hash 来为密码加密
本文转自:http://www.csharpwin.com/csharpspace/13412r9615.shtml (一) 为什么要用哈希函数来加密密码 如果你需要保存密码(比如网站用户的密码),你 ...
- js传输图片路径
数据库中存储数据/commons/img/***.jpg格式的图片路径. "<a onclick=\"showImg(\'"+dataEle.imgPath.rep ...
- 走起 ~私有gitlab
1.创建gitlab 账号,创建一个项目名称 地址:http://git.limikeji.com 2.配置git环境 用git命令上传代码 3.配置gitlab ssh 4.使用git命令上传代码 ...
- Lowest Common Ancestor of a Binary Search Tree(Java 递归与非递归)
题目描述: Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in ...
- 远程桌面连接报错:出现身份验证错误,要求函数不受支持,由于CredSSP加密Oracle修正。
远程桌面连接错误: 解决方法: 1.在运行中输入gpedit.msc,启动本地组策略编辑器. 2.定位到计算机—管理模板—系统—凭据分配 3.点凭据分配—加密Oracle修正. 4.加密Oracle修 ...
- spring boot(七)mybatis多数据源解决方案
说起多数据源,一般都来解决那些问题呢,主从模式或者业务比较复杂需要连接不同的分库来支持业务.我们项目是后者的模式,网上找了很多,大都是根据jpa来做多数据源解决方案,要不就是老的spring多数据源解 ...
- mysql排序的中文首字母排序和自定义排序
select * FROM organ_new where city_code = 'SZ0755' and organ_type = 'H' and state = '1' ORDER BY FIE ...
- python-day73--django-用户验证
一.auth模块 from django.contrib import auth django.contrib.auth中提供了许多方法,这里主要介绍其中的三个: 1 .authenticate() ...
- lua中的逻辑运算符
逻辑运算符也是3个,and,or,not,只是不是返回false和true,只有false和nil表示假,其他的都是真 and and使用短路运算,a and b,如果a为假,结果已经定了,返回a假, ...
- oracle中计算两个日期的相差天数、月数、年数、小时数、分钟数、秒数等
oracle如何计算两个日期的相差天数.月数.年数.小时数.分钟数.秒数 1.相差天数(两个日期相减) --Oracle中两个日期相差天数-- select TO_NUMBER(TO_DATE('20 ...