Parquet

  • Parquet is a columnar storage format for Hadoop.
  • Parquet is designed to make the advantages of compressed, efficient colunmar data representation available to any project in the Hadoop ecosystem.

Physical Properties

  • Some table storage formats provide parameters for enabling or disabling features and adjusting physical parameters.
  • Now, parquet file provides the following physical properties.
    • parquet.block.size: The block size is the size of a row group being buffered in memory. This limits the memory usage when writing. Larger values will improve the I/O when reading but consume more memory when writing. Default size is 134217728 bytes (= 128 * 1024 * 1024).
    • parquet.page.size: The page size if for compression. When reading, each page is the smallest unit that must be read fully to access a single record. If the value is too small, the compression will deteriorate. Default size is 1048576 bytes (= 1 * 1024 * 1024).
    • parquet.compression: The compression algorithm used to compress pages. It should be one of uncompressedsnappygziplzo. Default is uncompressed.
    • parquet.enable.dictionary: The boolean value  is to enable/disable dictionary encoding. It should be one of either true or false. Default is true.

Parquet Row Group Size

Row Group

  • Even though Parquet is a column-orientied format, the largest sections of data are groups of row data rows.
  • Records are organized into row groups so that the file is splittable and each split contains complete records.
  • Here’s a simple picture of how data is stored for a simple schema with columns A, in green, and B, in blue:
  • Why row groups? --> If the entire file were organized by columns then the underlying HDFS blocks would contain just a column or two of each record. Reassembling those records to process them would require shuffling almost all of the data around to the right place. As below:
  • There is another benefit to organizing data into row groups: memory consumption. Before Parquet can write the first data value in column B, it needs to write the last value of column A. All column-oriented formas need to buffer record data in memory until those records are written all at once.
  • You can control row group size by setting parquet.block.size, in bytes(default: 128MB). Parquet buffers data in its final encoded and compressed form, which uses less memory and means that the amount of buffered data is the same sa the row group size on disk.
  • That makes the row group size the most important setting. It controls both:
    • The amount of memory consumed for each open Parquet file, and
    • The layout of column data on disk.

  The row group setting is a trade-off between these two. It is generally better to organize data into larger contiguous column chunks to get better I/O performance, but this comes at the cost of using more memory.

Column Chunks

  • That leads to next level down in the Parquet file: column chunks.
  • Row groups are divided into column chunkds. The benefits of Parquet come from this organization
  • Stroing data by column lets Parquet use type-specific encodings and then compression to get more values in fewer bytes when writing, and skip data for columns u don's need when reading.
    pics here
  • The total row group size is divided between the column chuhnks. Column chunk sizes also vary widely depending on how densely Parquet can store the values, so the portion used for each column is ususlly skewed.

Recommendations

  • There’s no magic answer for setting the row group size, but this does all lead to a few best practices:

Know ur memory limits

  • Total memory for writes is approximately the row group size times the number of open files. If this is too high, then processes die with OutOfMemoryExceptions.
  • On the read side, memory consumption can be less by ingoring some columns, but this will usually still require half, a third, or some other constant times ur row group size.

Test with ur data

  • Write a file or two using the defaults and use parquet-tools to see the size distributions for columns in ur data. Then, try to pick a value that puts the majority of those columns at a few megabytes in each row group.

Align with Hdfs Blocks

  • Make sure some whole number of row groups make apprioxmately one Hdfs block. Each row group must be processed by a single task, so row groups larger than the HDFS block size will read a lot of data remotely. Row groups that spill over into adjacent blocks will have the same problem.

Using Parquet Tables in Impala

  • Impala can create tables that use parquet data files, insert data into those tables, convert the data into Parquet format, and query Parquet data files produced by Impala or other components.
  • The only syntax required is the STORED AS PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize the Parquet format automatically.

Insert

  • Avoiding using the INSERT ... VALUES syntax, or partitioning the table at too granular a level, if that would produce a large number of small files that cannot use Parquet optimizations for large data chunks.
  • Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a memory buffer to hold the data before it is written.
  • Such inserts can also exceed HDFS limits on simultaneous open files, because each node could potentially write to a separate data file for each partition, all at the same time.
  • If capacity problems still occur, consider splitting insert operations into one INSERT statement per partition.

Query

  • Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently, Impala does not support RLE_DICTIONARY encoding.

FYI

<Parquet><Physical Properties><Best practice><With impala>的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. genymotio安装apk包提示 ...abi ...cpu

    下载 Genymotion-ARM-Translation_v1.1 (1).zip 地址:http://qc1.androidfilehost.com/dl/Q-YDDKt4QaFNvKh62ppO ...

  2. 【IDEA】【4】遇到的问题

    前言: 1,jar包未导入到项目中 2,报错 cannot resolve symbol 3,左边栏只能看到文件看不到项目结构 4,报错 No valid Maven installation fou ...

  3. 使用maven命令把jar包加入maven仓库

    命令:mvn install:install-file -Dfile=D:\jar包路径xxxx.jar -DgroupId=根目录文件夹名字  -DartifactId=子目录文件夹 -Dversi ...

  4. GitHub C 和 C++ 开源库的清单(含示例代码)

    内容包括:标准库.Web应用框架.人工智能.数据库.图片处理.机器学习.日志.代码分析等. 标准库 C++标准库,包括了STL容器,算法和函数等. C++ Standard Library:是一系列类 ...

  5. Leetcode 120

    class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { ) ][]; tr ...

  6. Json:前台对象数组传到后台解析

    本文转自:http://blog.csdn.net/kymegg/article/details/50964581 方法:使用JsonArray进行解析 步骤: 一.引入一系列JAR包 要使程序便于解 ...

  7. 音频 API 一览

    iOS 和 OS X 平台都有一系列操作音频的 API,其中涵盖了从低到高的全部层级.随着时间的推移.平台的增长以及改变,不同 API 的数量可以说有着非常巨大的变化.本文对当前可以使用的 API 以 ...

  8. 绘图之EasyUI+Highcharts+Django

    前言: 在web开发过程中经常会出现图表展示数据的业务需求,如何把数据通过图表的形式,展示在页面上呢?本文将结合EasyUI.Highcharts.Django做一个简单的图表展示web应用: 一.E ...

  9. 使用Redis数据库(1)(三十三)

    Spring Boot中除了对常用的关系型数据库提供了优秀的自动化支持之外,对于很多NoSQL数据库一样提供了自动化配置的支持,包括:Redis, MongoDB, Elasticsearch, So ...

  10. Java自动装箱中的缓存原理

    今天看到一道'经典'面试题: Integer a = 100; Integer b = 100; System.out.println(a==b); Integer a2 = 200; Integer ...