Parquet

  • Parquet is a columnar storage format for Hadoop.
  • Parquet is designed to make the advantages of compressed, efficient colunmar data representation available to any project in the Hadoop ecosystem.

Physical Properties

  • Some table storage formats provide parameters for enabling or disabling features and adjusting physical parameters.
  • Now, parquet file provides the following physical properties.
    • parquet.block.size: The block size is the size of a row group being buffered in memory. This limits the memory usage when writing. Larger values will improve the I/O when reading but consume more memory when writing. Default size is 134217728 bytes (= 128 * 1024 * 1024).
    • parquet.page.size: The page size if for compression. When reading, each page is the smallest unit that must be read fully to access a single record. If the value is too small, the compression will deteriorate. Default size is 1048576 bytes (= 1 * 1024 * 1024).
    • parquet.compression: The compression algorithm used to compress pages. It should be one of uncompressedsnappygziplzo. Default is uncompressed.
    • parquet.enable.dictionary: The boolean value  is to enable/disable dictionary encoding. It should be one of either true or false. Default is true.

Parquet Row Group Size

Row Group

  • Even though Parquet is a column-orientied format, the largest sections of data are groups of row data rows.
  • Records are organized into row groups so that the file is splittable and each split contains complete records.
  • Here’s a simple picture of how data is stored for a simple schema with columns A, in green, and B, in blue:
  • Why row groups? --> If the entire file were organized by columns then the underlying HDFS blocks would contain just a column or two of each record. Reassembling those records to process them would require shuffling almost all of the data around to the right place. As below:
  • There is another benefit to organizing data into row groups: memory consumption. Before Parquet can write the first data value in column B, it needs to write the last value of column A. All column-oriented formas need to buffer record data in memory until those records are written all at once.
  • You can control row group size by setting parquet.block.size, in bytes(default: 128MB). Parquet buffers data in its final encoded and compressed form, which uses less memory and means that the amount of buffered data is the same sa the row group size on disk.
  • That makes the row group size the most important setting. It controls both:
    • The amount of memory consumed for each open Parquet file, and
    • The layout of column data on disk.

  The row group setting is a trade-off between these two. It is generally better to organize data into larger contiguous column chunks to get better I/O performance, but this comes at the cost of using more memory.

Column Chunks

  • That leads to next level down in the Parquet file: column chunks.
  • Row groups are divided into column chunkds. The benefits of Parquet come from this organization
  • Stroing data by column lets Parquet use type-specific encodings and then compression to get more values in fewer bytes when writing, and skip data for columns u don's need when reading.
    pics here
  • The total row group size is divided between the column chuhnks. Column chunk sizes also vary widely depending on how densely Parquet can store the values, so the portion used for each column is ususlly skewed.

Recommendations

  • There’s no magic answer for setting the row group size, but this does all lead to a few best practices:

Know ur memory limits

  • Total memory for writes is approximately the row group size times the number of open files. If this is too high, then processes die with OutOfMemoryExceptions.
  • On the read side, memory consumption can be less by ingoring some columns, but this will usually still require half, a third, or some other constant times ur row group size.

Test with ur data

  • Write a file or two using the defaults and use parquet-tools to see the size distributions for columns in ur data. Then, try to pick a value that puts the majority of those columns at a few megabytes in each row group.

Align with Hdfs Blocks

  • Make sure some whole number of row groups make apprioxmately one Hdfs block. Each row group must be processed by a single task, so row groups larger than the HDFS block size will read a lot of data remotely. Row groups that spill over into adjacent blocks will have the same problem.

Using Parquet Tables in Impala

  • Impala can create tables that use parquet data files, insert data into those tables, convert the data into Parquet format, and query Parquet data files produced by Impala or other components.
  • The only syntax required is the STORED AS PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize the Parquet format automatically.

Insert

  • Avoiding using the INSERT ... VALUES syntax, or partitioning the table at too granular a level, if that would produce a large number of small files that cannot use Parquet optimizations for large data chunks.
  • Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a memory buffer to hold the data before it is written.
  • Such inserts can also exceed HDFS limits on simultaneous open files, because each node could potentially write to a separate data file for each partition, all at the same time.
  • If capacity problems still occur, consider splitting insert operations into one INSERT statement per partition.

Query

  • Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently, Impala does not support RLE_DICTIONARY encoding.

FYI

<Parquet><Physical Properties><Best practice><With impala>的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. drf 生成接口文档

    REST framework可以自动帮助我们生成接口文档.接口文档以网页的方式呈现. 自动接口文档能生成的是继承自APIView及其子类的视图. 一.安装依赖 REST framewrok生成接口文档 ...

  2. Bipartite Segments CodeForces - 901C (区间二分图计数)

    大意: 给定无向图, 无偶环, 每次询问求[l,r]区间内, 有多少子区间是二分图. 无偶环等价于奇环仙人掌森林, 可以直接tarjan求出所有环, 然后就可以预处理出每个点为右端点时的答案. 这样的 ...

  3. mac中 hosts地址

    /etc/hosts 拉出hosts文件,修改之后再拉进去

  4. CentOS7 搭建LVS+keepalived负载均衡

    1.实验环境 4台节点 Keepalived1 + lvs1(Director1):192.168.31.4 Keepalived2 + lvs2(Director2):192.168.31.3 Re ...

  5. stl集合算法

    accumulate() 累加  accumulate: 对指定范围内的元素求和,然后结果再加上一个由val指定的初始值.  #include<numeric> vector<i ...

  6. navicat 连接 mysql 解决出现client does not support authentication protocol requested by server的问题

    MySQL8换了加密插件,数据库管理客户端都来不及更新,连接方式缺乏sha2的加密方式首先第一步, UPDATE mysql.user SET plugin = 'mysql_native_passw ...

  7. Spring Boot 是什么?

    Spring Boot 2.0 的推出又激起了一阵学习 Spring Boot 热,那么, Spring Boot 诞生的背景是什么?Spring 企业又是基于什么样的考虑创建 Spring Boot ...

  8. ireport部署到Linux服务器上遇到的问题解决

    ireport报表在本地Windows环境运行正常,一旦部署到Linux环境上出现了如下问题: 1.打开报表,后台直接报net.sf.jasperreports.engine.util.JRFontN ...

  9. HomeBrew的安装和简单使用

    homebrew 官网 https://brew.sh/ 转自:http://blog.csdn.NET/maojudong/article/details/7918291 1.  前言 作为Linu ...

  10. SQL - 数据定义

    SQL 的数据定义功能包括模式定义.表定义.视图和索引的定义: 操作对象 操作方式 创建 删除 修改 模式  create schema drop schema   表  create table d ...