<Parquet><Physical Properties><Best practice><With impala>
Parquet
- Parquet is a columnar storage format for Hadoop.
- Parquet is designed to make the advantages of compressed, efficient colunmar data representation available to any project in the Hadoop ecosystem.
Physical Properties
- Some table storage formats provide parameters for enabling or disabling features and adjusting physical parameters.
- Now, parquet file provides the following physical properties.
- parquet.block.size: The block size is the size of a row group being buffered in memory. This limits the memory usage when writing. Larger values will improve the I/O when reading but consume more memory when writing. Default size is 134217728 bytes (= 128 * 1024 * 1024).
- parquet.page.size: The page size if for compression. When reading, each page is the smallest unit that must be read fully to access a single record. If the value is too small, the compression will deteriorate. Default size is 1048576 bytes (= 1 * 1024 * 1024).
- parquet.compression: The compression algorithm used to compress pages. It should be one of uncompressed, snappy, gzip, lzo. Default is uncompressed.
- parquet.enable.dictionary: The boolean value is to enable/disable dictionary encoding. It should be one of either true or false. Default is true.
Parquet Row Group Size
Row Group
- Even though Parquet is a column-orientied format, the largest sections of data are groups of row data rows.
- Records are organized into row groups so that the file is splittable and each split contains complete records.
- Here’s a simple picture of how data is stored for a simple schema with columns A, in green, and B, in blue:

- Why row groups? --> If the entire file were organized by columns then the underlying HDFS blocks would contain just a column or two of each record. Reassembling those records to process them would require shuffling almost all of the data around to the right place. As below:

- There is another benefit to organizing data into row groups: memory consumption. Before Parquet can write the first data value in column B, it needs to write the last value of column A. All column-oriented formas need to buffer record data in memory until those records are written all at once.
- You can control row group size by setting parquet.block.size, in bytes(default: 128MB). Parquet buffers data in its final encoded and compressed form, which uses less memory and means that the amount of buffered data is the same sa the row group size on disk.
- That makes the row group size the most important setting. It controls both:
- The amount of memory consumed for each open Parquet file, and
- The layout of column data on disk.
The row group setting is a trade-off between these two. It is generally better to organize data into larger contiguous column chunks to get better I/O performance, but this comes at the cost of using more memory.
Column Chunks
- That leads to next level down in the Parquet file: column chunks.
- Row groups are divided into column chunkds. The benefits of Parquet come from this organization
- Stroing data by column lets Parquet use type-specific encodings and then compression to get more values in fewer bytes when writing, and skip data for columns u don's need when reading.
pics here - The total row group size is divided between the column chuhnks. Column chunk sizes also vary widely depending on how densely Parquet can store the values, so the portion used for each column is ususlly skewed.
Recommendations
- There’s no magic answer for setting the row group size, but this does all lead to a few best practices:
Know ur memory limits
- Total memory for writes is approximately the row group size times the number of open files. If this is too high, then processes die with OutOfMemoryExceptions.
- On the read side, memory consumption can be less by ingoring some columns, but this will usually still require half, a third, or some other constant times ur row group size.
Test with ur data
- Write a file or two using the defaults and use parquet-tools to see the size distributions for columns in ur data. Then, try to pick a value that puts the majority of those columns at a few megabytes in each row group.
Align with Hdfs Blocks
- Make sure some whole number of row groups make apprioxmately one Hdfs block. Each row group must be processed by a single task, so row groups larger than the HDFS block size will read a lot of data remotely. Row groups that spill over into adjacent blocks will have the same problem.
Using Parquet Tables in Impala
- Impala can create tables that use parquet data files, insert data into those tables, convert the data into Parquet format, and query Parquet data files produced by Impala or other components.
- The only syntax required is the STORED AS PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize the Parquet format automatically.
Insert
- Avoiding using the INSERT ... VALUES syntax, or partitioning the table at too granular a level, if that would produce a large number of small files that cannot use Parquet optimizations for large data chunks.
- Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a memory buffer to hold the data before it is written.
- Such inserts can also exceed HDFS limits on simultaneous open files, because each node could potentially write to a separate data file for each partition, all at the same time.
- If capacity problems still occur, consider splitting insert operations into one INSERT statement per partition.
Query
- Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently, Impala does not support RLE_DICTIONARY encoding.
FYI
<Parquet><Physical Properties><Best practice><With impala>的更多相关文章
- 简单物联网:外网访问内网路由器下树莓派Flask服务器
最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...
- 利用ssh反向代理以及autossh实现从外网连接内网服务器
前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...
- 外网访问内网Docker容器
外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...
- 外网访问内网SpringBoot
外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...
- 外网访问内网Elasticsearch WEB
外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...
- 怎样从外网访问内网Rails
外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...
- 怎样从外网访问内网Memcached数据库
外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...
- 怎样从外网访问内网CouchDB数据库
外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...
- 怎样从外网访问内网DB2数据库
外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...
- 怎样从外网访问内网OpenLDAP数据库
外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...
随机推荐
- Error:Unable to tunnel through proxy. Proxy returns "HTTP/1.1 400 Bad Request"解决方法
出现这个错误的原因主要是因为你的本地Gradle和项目的Gradle地址不一样,要么就是没找到 所以需要更改下你的Gradle地址 如图需要将你的Gradle版本的地址改为,你本地的Gradle地址即 ...
- hdu-3366 Passage 概率DP 读懂就能AC hhh
http://acm.split.hdu.edu.cn/showproblem.php?pid=3366 读题的时候没发现这个P Q 1-P-Q是全集的划分,以为是独立事件,写错了转移方程233 先贪 ...
- Confluence 6 如何考虑设置一个空间的主页
这空间是干什么的?空间主页是访问你空间的用户最先看到的页面.如果你在这个页面中包含一些你空间是干什么的内容能够帮助你的用户更加容易的访问你的空间,同时也能够让你的用户更加容易了解你正在工作的事情.你可 ...
- 利用adb截图然后传到电脑
首先配置好adb环境变量 然后adb devices查看是否连接手机,记得把手机调成开发者模式. 截屏 adb shell /system/bin/screencap -p 路径/文件名.后缀名 ad ...
- 小程序模板中data传值有无...
A:<template is="gemSelectColor" data="{{optionData}}" />B:<template is= ...
- python记录_day15 面向对象初识
一.面向过程和面向对象 1.面向过程 以我为中心,做一件事先干什么,在干什么,后干什么,有一套清楚完整的流程.核心是“过程”. 优点:将要解决的问题流程化, 编写相对简单 缺点:可扩展性差 2.面向对 ...
- 关于react16.4——错误边界
过去,组件内的 JavaScript 错误常常会破坏 React 内部状态,并导致它在下一次渲染时产生神秘的错误.这些错误总会在应用代码中较早的错误引发的,但 React 并没有提供一种方式能够在组件 ...
- Leetcode 1003. 检查替换后的词是否有效
1003. 检查替换后的词是否有效 显示英文描述 我的提交返回竞赛 用户通过次数245 用户尝试次数273 通过次数249 提交次数500 题目难度Medium 给定有效字符串 "ab ...
- Python装饰器--decorator
装饰器 装饰器实质是一个函数,其作用就是在不改动其它函数代码的情况下,增加一些功能.如果我们需要打印函数调用前后日志,可以这么做 def log(func): print('%s is running ...
- 这样好用的ReactiveCocoa,根本停不下来
作者:空之境界(博客) 前戏我个人非常推崇ReactiveCocoa,它就像中国的太极,太极生两仪,两仪生四象,四象生八卦,八卦生万物.ReactiveCocoa是一个高度抽象的编程框架,它真的很抽象 ...