BZOJ.4793.[CERC2016]Hangar Hurdles(Kruskal重构树 BFS)
\(Description\)
有一个\(n\times n\)的正方形网格,上面有若干障碍点。\(q\)次询问,每次询问把一个正方形箱子从\((x1,y1)\)推到\((x2,y2)\) ,不能接触障碍点且不超出边界,箱子的边长最大能是多少。
\(n\leq1000,q\leq3\times10^5\)。
\(Solution\)
我们可以直接将非障碍点看做顶点,向周围四个非障碍点连边。这样是要求一棵最大生成树。
从每个障碍点做八连通BFS,可以得到通过每个非障碍点位置的最大直径。
然后按最大直径从大到小依次加入点并标为访问过,每次与周围之前被访问过的点连边(也就是枚举权值小的与大的连边,优先连长边,和Kruskal一样)。
其实就是Kruskal重构树。连边时因为权值在点上,所以不需要新建点来表示边了,直接将权值大的点连到权值小的点作为其子节点即可。
两点间路径询问就是直接求LCA的权值了。
复杂度\(O(n^2+q\log n^2)\)。
注意初始化dis为INF(否则无障碍点时所有dis都为0)。
//126688kb 9332ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <vector>
#include <cstring>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<int,int>
//#define gc() getchar()
#define MAXIN 1000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1003,M=1e6+5;
const int dd[]={1,0,-1,0,1};
const int dx[]={0,0,-1,-1,-1,1,1,1};
const int dy[]={-1,1,-1,0,1,-1,0,1};
int n,id[N][N],A[M],fa[M];
std::vector<int> v[N];
char IN[MAXIN],*SS=IN,*TT=IN;
namespace HLD
{
int Enum,H[M],nxt[M],to[M],fa[M],sz[M],son[M],dep[M],top[M];
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x]; i; i=nxt[i])
if(to[i]!=fa[x]&&to[i]!=son[x]) DFS2(to[i],to[i]);
}
}
}
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
void Merge(int x,int y)//x<-y
{
y=Find(y);
if(x!=y) fa[y]=x, HLD::AE(x,y);
}
void BFS()
{
static int dis[N][N];
static bool vis[N][N];
static std::queue<pr> q;
memset(dis,0x3f,sizeof dis);
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(!id[i][j]) q.push(mp(i,j)),vis[i][j]=1,dis[i][j]=0;
while(!q.empty())
{
int x=q.front().first,y=q.front().second;
q.pop();
for(int i=0,xn,yn,d=dis[x][y]; i<8; ++i)
if((xn=x+dx[i])>0&&xn<=n&&(yn=y+dy[i])>0&&yn<=n&&!vis[xn][yn])
vis[xn][yn]=1, dis[xn][yn]=d+1, q.push(mp(xn,yn));
}
for(int i=1; i<=n; ++i)
for(int j=1,ds,t; j<=n; ++j)
if(t=id[i][j])
{
ds=std::min(dis[i][j],std::min(std::min(i,n-i+1),std::min(j,n-j+1)));
ds=(ds<<1)-1;//maxd = 2r-1
A[t]=ds, v[ds].push_back(t);
}
}
int main()
{
static pr ref[M];
static bool vis[N][N];
n=read(); int cnt=0;
for(int i=1; i<=n; ++i)
{
register char c=gc(); while(c!='.'&&c!='#') c=gc();
if(c=='.') id[i][1]=++cnt, ref[cnt]=mp(i,1);
for(int j=2; j<=n; ++j) if(gc()=='.') id[i][j]=++cnt, ref[cnt]=mp(i,j);
}
BFS();
for(int i=1; i<=cnt; ++i) fa[i]=i;
for(int i=n; i; --i)
{
const std::vector<int> &vec=v[i];
for(int j=0,l=vec.size(); j<l; ++j)
{
int t=vec[j],x=ref[t].first,y=ref[t].second;
vis[x][y]=1;
for(int i=0,xn,yn; i<4; ++i)
if((xn=x+dd[i])>0&&xn<=n&&(yn=y+dd[i+1])>0&&yn<=n&&vis[xn][yn])
Merge(t,id[xn][yn]);
}
}
for(int i=1; i<=cnt; ++i) if(fa[i]==i) Merge(0,i);
HLD::DFS1(0), HLD::DFS2(0,0);
for(int q=read(),p1,p2,x1,y1,x2,y2; q--; )
{
p1=id[read()][read()], p2=id[read()][read()];
if(!p1||!p2) puts("0");
else printf("%d\n",A[HLD::LCA(p1,p2)]);
}
return 0;
}
BZOJ.4793.[CERC2016]Hangar Hurdles(Kruskal重构树 BFS)的更多相关文章
- Gym - 101173H Hangar Hurdles (kruskal重构树/最小生成树+LCA)
题目大意:给出一个n*n的矩阵,有一些点是障碍,给出Q组询问,每组询问求两点间能通过的最大正方形宽度. 首先需要求出以每个点(i,j)为中心的最大正方形宽度mxl[i][j],可以用二维前缀和+二分或 ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- BZOJ 4242: 水壶(Kruskal重构树 + Bfs)
题意 一块 \(h ∗ w\) 的区域,存在障碍.空地.\(n\) 个建筑,从一个建筑到另一个建筑的花费为:路径上最长的连续空地的长度. \(q\) 次询问:从建筑 \(s_i\) 到 \(t_i\) ...
- 【BZOJ】3732: Network【Kruskal重构树】
3732: Network Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2812 Solved: 1363[Submit][Status][Dis ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增
建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...
- BZOJ.3551.[ONTAK2010]Peaks加强版(Kruskal重构树 主席树)
题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. 强制在线. \ ...
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
- bzoj 3551 kruskal重构树dfs序上的主席树
强制在线 kruskal重构树,每两点间的最大边权即为其lca的点权. 倍增找,dfs序对应区间搞主席树 #include<cstdio> #include<cstring> ...
随机推荐
- 【API】开机自启动- ActiveX启动
一 学习目标 这是一段远程控制木马开机启动的代码,主要使用了ActiveX方式启动.结合自己的理解重新整理了笔记.而作为编程新手入门的自己决定要开始梳理学习目的和订下学习的目标.从今天开始要坚持做到 ...
- Python3 Win下安装 scipy
没有利用Anaconda安装python库时可能遇到一些问题,例如直接 pip3 install scipy 可能报错,安装失败.原因是Scipy的安装需要依赖MKL库,官方的Numpy不包含MKL, ...
- 编写html与js交互网页心得:编写两个按钮切换显示不同的图片
第一步:先建立一个html网页,如下: <!DOCTYPE html><html> <head> <meta charset="utf-8&quo ...
- Android:Animation
Android 之 Animation 关于动画的实现,Android提供了Animation,在Android SDK介绍了2种Animation模式:1. Tween Animation:通过对场 ...
- [Vue warn]: Do not use built-in or reserved HTML elements as component id: header
因为header在HTML5里面是个原生的标签,所以在开发的时候会提示错误,解决方法:修改components里面左边的header
- bert中的分词
直接把自己的工作文档导入的,由于是在外企工作,所以都是英文写的 chinese and english tokens result input: "我爱中国",tokens:[&q ...
- Idea xml 粘贴文本保持原有格式
setting->Editor->Code Style->XML 在右边的面板中,单击第二个 “Other” 的页签,勾选“Keep white spaces”,重启idea.
- charles mock方法及问题
一. 抓包后修改返回数据1.生成一个完成的请求返回信息1.charles抓取一个完整的请求,返回数据2.然后找到该请求,右键“save response”,将该完整请求返回文件保存至本地3.修改本地需 ...
- jQuery .on() and .off() 命名空间
jQuery .on() and .off() 命名空间 博客分类: 生活 前端开发 jQuery1.7开始,jQuery引入了全新的事件绑定机制,jQuery .on() 和 off() 两个函 ...
- python 全栈开发,Day47(行级块级标签,高级选择器,属性选择器,伪类选择器,伪元素选择器,css的继承性和层叠性,层叠性权重相同处理,盒模型,padding,border,margin)
一.HTML中的行级标签和块级标签 块级标签 常见的块级标签:div,p,h1-h6,ul,li,dl,dt,dd 1.独占一行,不和其他元素待在同一行2.能设置宽高3.如果不设置宽高,默认为body ...