[OpenCV] Samples 17: Floodfill
一种聚类方式,代码解析
#!/usr/bin/env python '''
Floodfill sample. Usage:
floodfill.py [<image>] Click on the image to set seed point Keys:
f - toggle floating range
c - toggle 4/8 connectivity
ESC - exit
''' # Python 2/3 compatibility
from __future__ import print_function import numpy as np
import cv2 if __name__ == '__main__':
import sys
try:
fn = sys.argv[1]
except:
fn = '../data/fruits.jpg'
print(__doc__) img = cv2.imread(fn, True)
if img is None:
print('Failed to load image file:', fn)
sys.exit(1)
# 获取图片形状
h, w = img.shape[:2]
mask = np.zeros((h+2, w+2), np.uint8)
seed_pt = None
fixed_range = True
connectivity = 4 def update(dummy=None):
if seed_pt is None:
cv2.imshow('floodfill', img)
return
flooded = img.copy()
mask[:] = 0
lo = cv2.getTrackbarPos('lo', 'floodfill')
hi = cv2.getTrackbarPos('hi', 'floodfill')
flags = connectivity
if fixed_range:
flags |= cv2.FLOODFILL_FIXED_RANGE # Jeff: set mask based on seed_pt.
cv2.floodFill(flooded, mask, seed_pt, (255, 255, 255), (lo,)*3, (hi,)*3, flags)
cv2.circle(flooded, seed_pt, 2, (0, 0, 255), -1)
cv2.imshow('floodfill', flooded) def onmouse(event, x, y, flags, param):
global seed_pt
if flags & cv2.EVENT_FLAG_LBUTTON:
seed_pt = x, y
update() update()
cv2.setMouseCallback('floodfill', onmouse)
cv2.createTrackbar('lo', 'floodfill', 20, 255, update)
cv2.createTrackbar('hi', 'floodfill', 20, 255, update) while True:
ch = cv2.waitKey()
if ch == 27:
break
if ch == ord('f'):
fixed_range = not fixed_range
print('using %s range' % ('floating', 'fixed')[fixed_range])
update()
if ch == ord('c'):
connectivity = 12-connectivity
print('connectivity =', connectivity)
update()
cv2.destroyAllWindows()
[OpenCV] Samples 17: Floodfill的更多相关文章
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- [OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
- [OpenCV] Samples 12: laplace
先模糊再laplace,也可以替换为sobel等. 变换效果后录成视频,挺好玩. #include "opencv2/videoio/videoio.hpp" #include & ...
- [OpenCV] Samples 05: convexhull
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边. 对于 ...
- [OpenCV] Samples 03: cout_mat
操作Mat元素时:I.at<double>(1,1) = CV_PI; /* * * cvout_sample just demonstrates the serial out capab ...
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
随机推荐
- jdk9+版本的bug
今天从jvm大神"你假笨"的公众号上,看到一个jdk 9+版本的编译bug,记录一下: public class JavacEvalBug{ private static Stri ...
- Linux及MacOSX中使用zsh
via : http://leochin.com/linux-macosx-shell-zsh/ Linux及MacOSX中使用zsh zsh是另一种Shell,类似bash,tcsh等等,只是多了一 ...
- AngularJS中页面呈现html代码段
如何在页面呈现一段html代码段呢? 在textarea中我们这样写: <textarea name="" id="" cols="30&quo ...
- python测试开发django-47.xadmin上传图片和文件
前言 xadmin上传图片和上传文件功能 依赖环境 如果没安装Pillow的话,会有报错:practise.Upload.upload_image: (fields.E210) Cannot use ...
- Knockout.Js官网学习(Mapping高级用法一)
前言 有时候,在使用ko.mapping.fromJS的时候,可能有必要去使用mapping的高级用法来定义mapping的详细过程,以后定义了,以后再调用的时候就不必再定义了.这里有一些情形,你可能 ...
- Visio画流程图风格设置
第一步:选取设计下选用“简单” 第二步:设置颜色为“铅笔” 第三步:设置效果为“辐射” 第四步:效果
- getting-started-with-mqtt
来自:https://dzone.com/refcardz/getting-started-with-mqtt SECTION 1 Why MQTT? The Internet of Things ( ...
- PPTP 在Centos 7.1 建立方法与失效处理
# yum install pptp pptp-setup pptpsetup --create vpn --server (serverName) --username (Username) - ...
- Spring入门教程:通过MyEclipse开发第一个Spring项目
Animal.java package com.project; public class Animal { private String name; public String getName() ...
- 12C新特性--Application Continuity
Application Continuity特性可以在中断后恢复受影响的数据库会话的任务,从而让终端用户和应用程序感觉不到中断的发生.Application Continuity执行恢复的过程是在应用 ...