刚开始看这方面论文的时候对于各种评价方法特别困惑,还总是记混,不完全统计下,备忘。

关于召回率和精确率,假设二分类问题,正样本为x,负样本为o:

准确率存在的问题是当正负样本数量不均衡的时候:

精心设计的分类器最后算准确率还不如直接预测所有的都是正样本。

用Recall和Precision来衡量分类效果,可以使用F1 Score = 2PR/(P+R)来判断分类效果。

调整分类器,移动到这里:

Recall达到百分之一百,但同时Precision也下降了:把不是负样本也分类成了正样本。一般来说,R高,P低,或者R低,P高。大概长这样:

从这里偷来的图

一个好的分类方法当然是希望二者都尽量高,也就是右图红色线那样,所以提出又提出了一个衡量标准:mAP=∫P(R)dR,(PR曲线面积越大越好)。

当然不同应用有不同需求,还是要根据具体应用设计。

记得微软ECCV14的人脸检测就是先用OpenCV里的VJ方法,把Recall调得很高,尽量保证不漏检,同时带来的问题是Precision很低,有很多不是脸的东西,再通过3000帧人脸对齐方法,迭代几次,一边对齐人脸一边把不是脸的排除掉。

另外还有 ROC AUC及其他各种......

ROC和AUC也是针对正负样本数量不均衡的,参考这里

ROC曲线越靠近左上角,试验的准确性就越高。最靠近左上角的ROC曲线的点是错误最少的最好阈值,其假阳性和假阴性的总数最少。亦可通过分别计算各个试验的ROC曲线下的面积(AUC)进行比较,哪一种试验的 AUC最大,则哪一种试验的诊断价值最佳。

kISSME(cvpr12)里的ROC曲线:

关于Precision和Recall,在Ng的cousera课程 week6 lecture11里有

机器学习评价方法 - Recall & Precision的更多相关文章

  1. 机器学习classification_report方法及precision精确率和recall召回率 说明

    classification_report简介 sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要 ...

  2. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  3. 机器学习 F1-Score, recall, precision

    在机器学习,模式识别中,我们做分类的时候,会用到一些指标来评判算法的优劣,最常用的就是识别率,简单来说,就是 Acc=Npre/Ntotal 这里的 Npre表示预测对的样本数,Ntotal表示测试集 ...

  4. 图像质量评价方法PSNR+SSIM&&评估指标SROCC,PLCC

    update:2018-04-07 今天发现ssim的计算里面有高斯模糊,为了快速计算,先对每个小块进行计算,然后计算所有块的平均值.可以参考源代码实现,而且代码实现有近似的在里面!matlab中中图 ...

  5. Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率和决策树多元分类使用.precision方法以precision来评估模型的准确率(图文详解)

    不多说,直接上干货! Spark Mllib里决策树二元分类使用.areaUnderROC方法计算出以AUC来评估模型的准确率 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的 ...

  6. 多准则决策模型-TOPSIS评价方法-源码

    ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 ...

  7. 自动文档摘要评价方法:Edmundson,ROUGE

    自动文档摘要评价方法大致分为两类: (1)内部评价方法(Intrinsic Methods):提供参考摘要,以参考摘要为基准评价系统摘要的质量.系统摘要与参考摘要越吻合, 质量越高. (2)外部评价方 ...

  8. 全参考视频质量评价方法(PSNR,SSIM)以及与MOS转换模型

    转载处:http://blog.csdn.NET/leixiaohua1020/article/details/11694369 最常用的全参考视频质量评价方法有以下2种: PSNR(峰值信噪比):用 ...

  9. 视频质量评价方法:VQM

    如何确定一个视频质量的好坏一直以来都是个棘手的问题.目前常用的方法就是通过人眼来直接观看,但是由于人眼的主观性及观看人员的单体差异性,对于同样的视频质量,不同的人的感受是不一样的.为此多个研究机构提出 ...

随机推荐

  1. python摸爬滚打之day01----初识Python

    1.编程语言分类 编译型语言:程序被一次性全部翻译成机器语言,计算机直接以机器语⾔言来运⾏行行此程序. 优点:运行效率高,可脱离语言环境独立运行. 缺点:开发效率低,可移植性差. 解释型语言:将程序逐 ...

  2. nginx 负载均衡5种配置方式

    nginx 负载均衡5种配置方式 1.轮询(默认) 每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除. 2.weight 指定轮询几率,weight和访问比率成正比, ...

  3. es倒排索引和正排索引

    搜索的时候,要依靠倒排索引:排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values.在建立索引的时候,一方面会建立倒排索引, ...

  4. SQL Server数据恢复准备之TRUNCATE TABLE理解

    SQL Server数据恢复准备之TRUNCATE TABLE理解 转自:https://blog.51cto.com/aimax/2142553 易语随风去关注0人评论6717人阅读2018-07- ...

  5. 宝塔Linux面板5.9平滑升级到6.8版

    昨天ytkah重新安装python后宝塔面板里的首页/软件管理/面板设置出现了问题,点击直接500错误,试着执行sh update.sh也是无法解决,因为5.9无法直接从面板那升级到6.x,用河妖的方 ...

  6. Github上Laravel开源排行榜Star数31-60名

    Github上Laravel开源排行榜Star数31-60名,罗列所有 Laravel 开源扩展包,含 Github Star 数量,下载数量和项目简介.默认排序是按Star数量从多到少来排 31.c ...

  7. RN全局的变量,方法,全局类,全局类方法

    为了方便学习,很简单的小Demo,不懂可以下方留言,百分百原创,相互学习,相互进步 全局的方法 创建一个js文件,命名OvallAll //全局的方法 //这里export default 只能输出一 ...

  8. UILabel部分文字可点击

    源代码:https://github.com/lyb5834/YBAttributeTextTapAction地址 如果想用富文本文件,可以参考的另外一篇博客; https://www.cnblogs ...

  9. oracle安装---yum.sh

    !#/bin/bash yum install binutils* -yyum install compat* -yyum install elfutils* -yyum install gcc* - ...

  10. 如何创建线程第一种继承Thread类

    步骤 1:定义一个类 继承Thread类.2:重写Thread类的run方法.3:直接创建Thread的子类对象创建线程.4:调用start方法开启线程并调用线程的任务run方法执行.-------- ...