HanLP中人名识别分析详解

在看源码之前,先看几遍论文《基于角色标注的中国人名自动识别研究》

关于命名识别的一些问题,可参考下列一些issue:

l ·名字识别的问题 #387

l ·机构名识别错误

l ·关于层叠HMM中文实体识别的过程

HanLP参考博客:

词性标注

层叠HMM-Viterbi角色标注模型下的机构名识别

分词

在HMM与分词、词性标注、命名实体识别中说:

分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)

分词也是采用了维特比算法的动态规划性质求解的,具体可参考:文本挖掘的分词原理

角色观察

以“唱首张学友的歌情已逝”为例,

先将起始顶点 始##始,角色标注为:NR.A 和 NR.K,频次默认为1

iterator.next(); tagList.add(new EnumItem<NR>(NR.A, NR.K)); // 始##始 A K

对于第一个词“唱首”,它不存在于 nr.txt中,EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);返回null,于是根据它本身的词性猜一个角色标注:

switch (vertex.guessNature()){

case nr:

case nnt:

default:{

nrEnumItem = new EnumItem<NR>(NR.A, PersonDictionary.transformMatrixDictionary.getTotalFrequency(NR.A));

}

}

由于"唱首"的Attribute为 nz 16,不是nr 和 nnt,故默认给它指定一个角色NR.A,频率为nr.tr.txt中 NR.A 角色的总频率。

此时,角色列表如下:

接下来是顶点“张”,由于“张”在nr.txt中,因此PersonDictionary.dictionary.get(vertex.realWord)返回EnumItem对象,直接将它加入到角色列表中:

EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);

tagList.add(nrEnumItem);

加入“张”之后的角色列表如下:

“唱首张学友的歌情已逝” 整句的角色列表如下:

至此,角色观察 部分 就完成了。

总结一下,对句子进行角色观察,首先是通过分词算法将句子分成若干个词,然后对每个词查询人名词典(PersonDictionary)。

若这个词在人名词典中(nr.txt),则记录该词的角色,所有的角色在com.hankcs.hanlp.corpus.tag.NR.java中定义。

若这个词不在人名词典中,则根据该词的Attribute “猜一个角色”。在猜的过程中,有些词在核心词典中可能已经标注为nr或者nnt了,这时会做分裂处理。其他情况下则是将这个词标上NR.A角色,频率为 NR.A 在转移矩阵中的总词频。

维特比算法(动态规划)求解最优路径

在上图中,给每个词都打上了角色标记,可以看出,一个词可以有多个标记。而我们需要将这些词选择一条路径最短的角色路径。参考隐马尔可夫模型维特比算法详解

List<NR> nrList = viterbiComputeSimply(roleTagList);

//some code....

return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);

而这个过程,其实就是:维特比算法解码隐藏状态序列。在这里,五元组是:

l 隐藏状态集合 com.hankcs.hanlp.corpus.tag.NR.java 定义的各个人名标签

l 观察状态集合 已经分好词的各个tagList中元素(相当于分词结果)

l 转移概率矩阵 由 nr.tr.txt 文件生成得到。具体可参考:

l 发射概率 某个人名标签(隐藏状态)出现的次数 除以 所有标签出现的总次数

Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)

l 初始状态(始##始) 和 结束状态(末##末)

维特比解码隐藏状态的动态规划求解核心代码如下:

for (E cur : item.labelMap.keySet())

{

double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur));

if (perfect_cost > now)

{

perfect_cost = now;

perfect_tag = cur;

}

}

transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] 是前一个隐藏状态 pre.ordinal()转换到当前隐藏状态cur.ordinal()的转移概率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)是当前隐藏状态的发射概率。二者“相减”得到一个概率 保存在double now变量中,然后通过 for 循环找出 当前观察状态 对应的 最可能的(perfect_cost最小) 隐藏状态 perfect_tag。

至于为什么是上面那个公式来计算转移概率和发射概率,可参考论文:《基于角色标注的中国人名自动识别研究》

在上面例子中,得到的最优隐藏状态序列(最优路径)K->A->K->Z->L->E->A->A 如下:

nrList = {LinkedList@1065} size = 8

"K" 始##始

"A" 唱首

"K" 张

"Z" 学友

"L" 的

"E" 歌

"A" 情已逝

"A" 末##末

例如:

​隐藏状态---观察状态

"K"----------始##始

最大匹配

有了最优隐藏序列:KAKZLEAA,接下来就是:后续的“最大匹配处理”了。

PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);

在最大匹配之前,会进行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定义了隐藏状态的具体含义。比如说,若最优隐藏序列中 存在 'U' 或者 'V',

U Ppf 人名的上文和姓成词 这里【有关】天培的壮烈

V Pnw 三字人名的末字和下文成词 龚学平等领导, 邓颖【超生】前

则会做“拆分处理”

switch(nr)

{

case U:

//拆分成K B

case V:

//视情况拆分

}

拆分完成之后,重新得到一个新的隐藏序列(模式)

String pattern = sbPattern.toString();

接下来,就用AC自动机进行最大模式匹配了,并将匹配的结果存储到“最优词网”中。当然,在这里就可以自定义一些针对特定应用的 识别处理规则

trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit<NRPattern>(){

//.....

wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll);

}

将识别出来的人名保存到最优词网后,再基于最优词网调用一次维特比分词算法,得到最终的分词结果---细分结果。

if (wordNetOptimum.size() != preSize)

{

vertexList = viterbi(wordNetOptimum);

if (HanLP.Config.DEBUG)

{

System.out.printf("细分词网:\n%s\n", wordNetOptimum);

}

}

总结

源码上的人名识别基本上是按照论文中的内容来实现的。对于一个给定的句子,先进行下面三大步骤处理:

l 角色观察

l 维特比算法解码求解隐藏状态(求解各个分词 的 角色标记)

l 对角色标记进行最大匹配(可做一些后处理操作)

最后,再使用维特比算法进行一次分词,得到细分结果,即为最后的识别结果。

这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。

关于动态规划的一个简单示例,可参考:动态规划之Fib数列类问题应用。

文章来源 hapjin 的博客

HanLP中人名识别分析详解的更多相关文章

  1. HanLP中人名识别分析

    HanLP中人名识别分析 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: 名字识别的问题 #387 机构名识别错误 关 ...

  2. HanLP中的人名识别分析详解

    在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: u u名字识别的问题 #387 u u机构名识别错误 u u关于层叠H ...

  3. 开源自然语言处理工具包hanlp中CRF分词实现详解

     CRF简介 CRF是序列标注场景中常用的模型,比HMM能利用更多的特征,比MEMM更能抵抗标记偏置的问题. [gerative-discriminative.png] CRF训练 这类耗时的任务,还 ...

  4. HanLP分词命名实体提取详解

    HanLP分词命名实体提取详解   分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版 ...

  5. C#中string.format用法详解

    C#中string.format用法详解 本文实例总结了C#中string.format用法.分享给大家供大家参考.具体分析如下: String.Format 方法的几种定义: String.Form ...

  6. c++中vector的用法详解

    c++中vector的用法详解 vector(向量): C++中的一种数据结构,确切的说是一个类.它相当于一个动态的数组,当程序员无法知道自己需要的数组的规模多大时,用其来解决问题可以达到最大节约空间 ...

  7. Memcache的使用和协议分析详解

    Memcache的使用和协议分析详解 作者:heiyeluren博客:http://blog.csdn.NET/heiyeshuwu时间:2006-11-12关键字:PHP Memcache Linu ...

  8. JScript中的条件注释详解(转载自网络)

    JScript中的条件注释详解-转载 这篇文章主要介绍了JScript中的条件注释详解,本文讲解了@cc_on.@if.@set.@_win32.@_win16.@_mac等条件注释语句及可用于条件编 ...

  9. Scala 深入浅出实战经典 第57讲:Scala中Dependency Injection实战详解

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

随机推荐

  1. Ubantu-Nginx部署

    nginx+uwsgi+django部署流程   当我们在用django开发的web项目时,开发测试过程中用到的是django自带的测试服务器,由于其安全及稳定等性能方面的局限性,django官方并不 ...

  2. spark:ML和MLlib的区别

    ML和MLlib的区别如下: ML是升级版的MLlib,最新的Spark版本优先支持ML. ML支持DataFrame数据结构和Pipelines,而MLlib仅支持RDD数据结构. ML明确区分了分 ...

  3. c# GetType()和typeof()的区别

    c#   GetType()和typeof()的区别 C#中任何对象都具有GetType()方法,返回Type类型的当前对象的类型. GetType()是基类System.Object的方法,因此只有 ...

  4. SSH防止超时的设置

    针对SSH命令工具超时的解决方法: 1.在命令行输入这两行代码,即可完成 echo export TMOUT=1000000 >> /root/.bash_profile cat /roo ...

  5. Makefile内置变量,递归式变量,直接展开式变量,条件赋值,追加赋值

    将shell命令的输出赋值给变量: VALUE = $(shell   命令) Makefile中给变量赋值: =     是递归展开式变量 value1 = 5 value2 = $(value1) ...

  6. 2.26 js解决click失效问题

    2.26 js解决click失效问题 前言有时候元素明明已经找到了,运行也没报错,点击后页面没任何反应.这种问题遇到了,是比较头疼的,因为没任何报错,只是click事件失效了.本篇用2种方法解决这种诡 ...

  7. tmux-2.3 conf

    set-window-option -g automatic-rename off set -g allow-rename off # 把前缀键从 C-b 更改为 C-a set -g prefix ...

  8. Ubuntu关闭进入screensaver模式

    /********************************************************************************* * Ubuntu关闭进入scree ...

  9. [opencvjichu]cv::Mat::type() 返回值

    opencv opencv中Mat存在各种类型,其中mat有一个type()的函数可以返回该Mat的类型.类型表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的常量,其命名规则为CV_(位 ...

  10. MySQL的查询语句

    一.基本查询语句 1.1从单个表中查询列 语法:select 查询的列1,查询的列2  from 表名  where 条件 group by 分组条件  order by 排序条件  having  ...