Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those terms together: a1 + a2 + a3 + ···. To emphasize that there are an infinite number of terms, a series is often called an infinite series.

值得注意的是等式右边并不是左边的和,只是左边的缩写形式。

because when you start from adding up the first two terms of the infinite sequence, and then add the third term, the 4-th term, ..., no matter how much time you spend on adding these terms, you always end up adding up only a finite number of terms , thus you couldn't add up an infinite number of terms, so cannot compute their sum by adding one term after another.

An easy way that an infinite series has a sum is if all the $a_n$ are zero for n sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.

Working out the properties of the series that has a sum even if infinitely many terms are non-zero is the essence of the study of series. Consider the example

It is possible to "visualize" it has sum on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, ½, ¼, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: when we have marked off ½, we still have a piece of length ½ unmarked, so we can certainly mark the next ¼. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2. In other words, the series has an upper bound. As for proving the series is equal to 2, we choose $$a_n=1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}$$ and $b_n=2$, then $$a_n<1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots\leq b_n$$ holds for every nature number $n$ and $\lim _{n\rightarrow \infty }\left( b_{n}-a_{n}\right)=\lim _{n\rightarrow \infty }\frac{1}{2^n} =0$, according to the nested intervals theorem the intersection of all the $[a_n,b_n]$ contains exactly one real number, since 2 is an element of each of these intervals, $1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots = 2$, this proved the sum of the series is 2.

It is also possible to prove $$1 - {1 \over 2} + {1 \over 3} - {1 \over 4} + {1 \over 5} - \cdots =\sum_{n=1}^\infty {\left(-1\right)^{n-1} \over n}=\ln(2)$$ using the nested intervals theorem by choosing $a_k=\sum_{n=1}^{2k} {\left(-1\right)^{n-1} \over n}$ and $b_k=\sum_{n=1}^{2k+1} {\left(-1\right)^{n-1} \over n}$ for all natural numbers $k$.

While a more general method to get the sum of a series is by taking limit.

As you see, we defined the sum of a infinite series, this result seems not that naturally like 2 + 2 is computed out equal to 4,so is the definition give us the true sum of the infinite series? $\lim _{n\rightarrow \infty }S_{n}$ has a meaning that the number of the first n terms added up increases indefinitely, this is equivalent to $$a_{1}+a_{2}+a_{3}+\cdots $$, thus defining the sum of a series as the limit of the sequence of its partial sums is intuitively plausible.

Given the definition gives the true sum of the infinite series, the statement that 0.999… = 1 can itself be interpreted and proven as:

${\displaystyle 0.999\ldots =\lim _{n\to \infty }0.\underbrace {99\ldots 9} _{n}=\lim _{n\to \infty }\sum _{k=1}^{n}{\frac {9}{10^{k}}}=\lim _{n\to \infty }\left(1-{\frac {1}{10^{n}}}\right)=1-\lim _{n\to \infty }{\frac {1}{10^{n}}}=1\,-\,0=1.\,}$

批注:一开始convergent和divergent是对一个sequence来说的,定义如下

但怎么能说级数convergent和divergent了呢?级数,根据上面的定义不就是一个数列的无穷多项依次加起来的一个和式吗?对于一个和式能说convergent和divergent吗?我看不如说一个级数has a sum or not,然后说其部分和组成的数列convergent和divergent似乎比较合适!说一个series converges to a limit L不如说这个series =L。

quoted from http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-convergence-2009-1.pdf

深入理解无穷级数和的定义(the sum of the series)的更多相关文章

  1. Sum of AP series——AP系列之和

    A series with same common difference is known as arithmetic series. The first term of series is 'a' ...

  2. [译] 理解PHP内部函数的定义(给PHP开发者的PHP源码-第二部分)

    文章来自:http://www.hoohack.me/2016/02/10/understanding-phps-internal-function-definitions-ch 原文:https:/ ...

  3. 关于DFS和BFS的理解 以及坐标的定义

    http://blog.csdn.net/bool_isprime/article/details/5803018DFS: 1: 坐标类型搜索 :这种类型的搜索题目通常来说简单的比较简单,复杂的通常在 ...

  4. 【零基础学习iOS开发】【02-C语言】11-函数的声明和定义

    在上一讲中,简单介绍了函数的定义和使用,只要你想完成一个新功能,首先想到的应该是定义一个新的函数来完成这个功能.这讲继续介绍函数的其他用法和注意事项. 一.函数的声明 1.在C语言中,函数的定义顺序是 ...

  5. node.js 中回调函数callback(转载),说的很清楚,看一遍就理解了

    最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: 复制代码 代码如下: app.use(fu ...

  6. 理解javascript中的回调函数(callback)

    以下内容来源于:http://www.jb51.net/article/54641.htm 最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs ...

  7. 带你深入理解STL之迭代器和Traits技法

    在开始讲迭代器之前,先列举几个例子,由浅入深的来理解一下为什么要设计迭代器. //对于int类的求和函数 int sum(int *a , int n) { int sum = 0 ; for (in ...

  8. 我从来不理解JavaScript闭包,直到有人这样向我解释它...

    摘要: 理解JS闭包. 原文:我从来不理解JavaScript闭包,直到有人这样向我解释它... 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 正如标题所述,JavaScript闭包 ...

  9. JAVAWEB开发之JSTL标签库的使用、 自己定义EL函数、自己定义标签(带属性的、带标签体的)

    JSTL  JSTL简单介绍: JSTL的全称:JSP Standard Tag Library,JSP标准标签库 JSTL的作用:   提供给Java Web开发者一个标准通用的标签函数库   和E ...

随机推荐

  1. jQuery Address全站 AJAX 完整案例详解

    本文详细介绍如何利用 jQuery 框架以及 jQuery Address 插件实现最基本的全站 AJAX 动态加载页面内容的功能的方法. 案例目标 以常见基本结构的网站为案例,实现全站链接 AJAX ...

  2. request.GetResponse()超时的解决办法

    var request = (HttpWebRequest)WebRequest.Create(url); request.Timeout = Timeout.Infinite; request.Ke ...

  3. php手册总结《类》

    手册页面: http://php.net/manual/zh/language.oop5.basic.php >> 类名 类名可以是任何非 PHP 保留字的合法标签.一个合法类名以字母或下 ...

  4. 一个textview多种颜色

    //方法1 TextView textView = (TextView) view.findViewById(R.id.text); SpannableString ss = new Spannabl ...

  5. MXNET:卷积神经网络基础

    卷积神经网络(convolutional neural network).它是近年来深度学习能在计算机视觉中取得巨大成果的基石,它也逐渐在被其他诸如自然语言处理.推荐系统和语音识别等领域广泛使用. 目 ...

  6. ref和引用类型传参的区别

    引用类型对象本身不改变,只改变对象的属性时,我们在操作同一个对象:(类似c++指针指向的地址) 如果连对象本身都可能会改变,又要保证在操作同一个对象,就用ref传引用类型的对象吧!(类似c++指向一个 ...

  7. python3 zip压缩文件压缩多个不同文件夹内的文件方法

    #!/usr/bin/env python # -*- coding:utf-8 -*- import zipfile def addzip(): f = zipfile.ZipFile('test. ...

  8. 使用grep查找字符串

    如下: grep -r 'target string' --exclude='pattern' dir/ 例子: grep -r Debug --exclude='*.js' ./ 查找本目录下除了j ...

  9. .Net MVC Cache 缓存技术总结

    一.细说 ASP.NET Cache 及其高级用法 二..Net环境下的缓存技术介绍 (转) 三.asp.net中缓存的使用介绍一 四.HttpContext.Current.Cache 过期时间

  10. linux手动安装sbt过程

    ubuntu14 手动安装sbt 参见官网配置说明http://www.scala-sbt.org/release/tutorial/Manual-Installation.html 1.下载sbt通 ...