BZOJ2956: 模积和
Description
求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j。
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
3 4
Sample Output
1
样例说明
答案为(3 mod 1)*(4 mod 2)+(3 mod 1) * (4 mod 3)+(3 mod 1) * (4 mod 4) + (3 mod 2) * (4 mod 1) + (3 mod 2) * (4 mod 3) + (3 mod 2) * (4 mod 4) + (3 mod 3) * (4 mod 1) + (3 mod 3) * (4 mod 2) + (3 mod 3) * (4 mod 4) = 1
数据规模和约定
对于100%的数据n,m<=10^9。
Solution
题目就是求
\]
先讨论不考虑i≠j的限制条件的情况
\begin{align*}
&\sum_{i=1}^n\sum_{j=1}^m(n\space mod\space i)(m\space mod\space j)\\
&=\sum\sum{(n-\frac{n}{i}*i)(m-\frac{m}{j}*j)}\\
&=\sum_{i=1}^{n}\sum_{j=1}^{m}{nm-\frac{n}{i}*i*m-n*\frac{m}{j}*j+i*j*\frac{n}{i}*\frac{m}{j}}\\
&=n^2m^2-nm^2\sum_{i=1}^{n}{\frac{n}{i}*i}-n^2*m\sum_{j=1}^m{\frac{m}{j}*j}+nm\sum_{i=1}^{n}{i*\frac{n}{i}*}\sum_{j=1}^{m}{j*\frac{m}{j}}
\end{align*}
\]
这是一种方法
然而还有更简便的方法
\sum{n\space mod\space i}*\sum{m\space mod\space j}
\]
直接用余数之和那题的方法求这个就好(不知道余数之和那题怎么写的戳这里)
就不用上面一大堆码起来也麻烦的式子了
对于i==j的情况
\begin{align*}
&\sum_{i=1}^{k=min(n,m)}{(n-\frac{n}{i}*i)(m-\frac{m}{i}*i)}[i==j]\\
&=\sum_{i=1}^{k}{nm-m*\frac{n}{i}*i-n*\frac{m}{i}*i+i^2*\frac{n}{i}*\frac{m}{i}}\\
&=knm-km\sum_{i=1}^{k}{\frac{n}{i}*i}-kn\sum_{i=1}^{k}{\frac{m}{i}*i}+k\sum_{i=1}^{k}{i^2}\sum_{i=1}^{k}{\frac{n}{i}}\sum_{i=1}^{k}{\frac{m}{i}}
\end{align*}
\]
利用数论分块\(O(\sqrt{n})\)求出上面两式,将两式相减即可
P.S:\(\sum_{i=1}^n{i^2}=\frac{n*(n+1)*(2n+1)}{6}\)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 2010
#define mod 19940417
const ll m6 = 3323403;
ll n, m;
ll ans = 0;
ll sum(ll l, ll r) {
return (r - l + 1) * (l + r) / 2 % mod;
}
ll calc(ll k) {
ll ans = k * k % mod;
for(int l = 1, r; l <= k; l = r + 1) {
r = k / (k / l);
ans = ((ans - sum(l, r) * (k / l) % mod) % mod + mod) % mod;
}
return ans;
}
ll cal(ll x) {
return x * (x + 1) % mod * (2 * x + 1) % mod * m6 % mod;
}
ll sum2(ll l, ll r) {
return (cal(r) - cal(l - 1) + mod) % mod;
}
int main() {
scanf("%lld%lld", &n, &m);
if(n > m) swap(n, m);
ans = calc(n) * calc(m) % mod;
ans = ((ans - n * n % mod * m % mod) % mod + mod) % mod;
for(int l = 1, r; l <= n; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans = (ans + sum(l, r) * ((n/l)*m % mod + (m/l)*n % mod) % mod % mod);
ans = (ans - sum2(l, r) * (n/l) % mod * (m/l) % mod + mod) % mod;
}
printf("%lld\n", (ans % mod + mod) % mod);
return 0;
}
BZOJ2956: 模积和的更多相关文章
- 【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...
- BZOJ2956: 模积和——整除分块
题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- bzoj2956: 模积和(数论)
先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- BZOJ_2956_模积和_数学
BZOJ_2956_模积和_数学 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数 ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
- 【BZOJ】2956:模积和
Time Limit: 10 Sec Memory Limit: 128 MB Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j ...
随机推荐
- Android开发随笔记_1
1):android:configChanges="keyboardHidden|orientation":配置的好处:一般在AndroidManifest.xml文件中都没有使用 ...
- html5-字体css
#div1{font-size: 50px;}#div2{font-size: 50%;}#div3{font-size: 300%}#div4{font-size: 3em;}#div5{font- ...
- 反射(I)
反射获取属性和属性值 let item = DoctorGroup() guard let dic = InterfaceTests.obtainValues(subObject: item) els ...
- OBO文件格式1.2
该文件每一行都是一个键值对,基本格式为: 键: 值!注释 总体结构: 文件头 !包含若干行总体说明 词条1 ![词条类型]占第一行,后跟若干行说明 词条2 ! ...
- 如何给webview页面自定义404页面
//示例地图类 package com.can2do.doimobile.news; import android.os.Bundle; import android.os.Handler; impo ...
- ajax处理文件下载
ajax中处理文件下载,可能大数会遇到我和一样的问题,什么问题呢?就是下载程序执行了,但是浏览器没有任何下载操作,这是为什么呢? 那是因为response原因,一般请求浏览器是会处理服务器输出的res ...
- slideDown留言板
<!doctype html> <html lang="en"> <head> <meta http-equiv="Conten ...
- 原生Ajax和jqueryAjax写法
原生写法: $('#send').click(function(){ //请求的5个阶段,对应readyState的值 //0: 未初始化,send方法未调用: //1: 正在发送请求,send方法已 ...
- c++ STL中的next_permutation
default (1) template <class BidirectionalIterator> bool next_permutation (BidirectionalIterato ...
- Golang实现二分查找法
二分查找法就是实现在一组有序的数字数组集合中最快找到指定元素的下标 思路 ①先找到中间的下标middle = (leftIndex + RightIndex) /2 ,然后让中间的下标值和FindVa ...