[luogu P3628] [APIO2010]特别行动队
[luogu P3628] [APIO2010]特别行动队
题目描述
你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如(i, i + 1, ..., i + k)(i,i+1,...,i+k)的序列。 编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内 士兵初始战斗力之和,即 x = x_i + x_{i+1} + ... + x_{i+k}x=xi+xi+1+...+xi+k。
通过长期的观察,你总结出一支特别行动队的初始战斗力 x 将按如下经验公 式修正为 $x':x' = ax2 + bx + c$,其中 a, b, c 是已知的系数(a < 0)。 作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后 战斗力之和最大。试求出这个最大和。
例如,你有 4 名士兵, x_1 = 2, x_2 = 2, x_3 = 3, x_4 = 4x1=2,x2=2,x3=3,x4=4。经验公式中的参数为 a = –1, b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵 1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分 别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它 方案能使修正后的战斗力和更大。
输入输出格式
输入格式:
输入由三行组成。第一行包含一个整数 n,表示士兵的总数。第二行包含三 个整数 a, b, c,经验公式中各项的系数。第三行包含 n 个用空格分隔的整数 $x_1, x_2, …, x_n$,分别表示编号为 1, 2, …, n 的士兵的初始战斗力。
输出格式:
输出一个整数,表示所有特别行动队修正后战斗力之和的最大值。
输入输出样例
4 -1 10 -20 2 2 3 4
9
说明
20%的数据中,n ≤ 1000;
50%的数据中,n ≤ 10,000;
100%的数据中,1 ≤ n ≤ 1,000,000,–5 ≤ a ≤ –1,|b| ≤ 10,000,000,|c| ≤ 10,000,000,1 ≤ xi ≤ 100。
斜率DP pro 2。相比上一题,本蒟蒻感觉这题水多了,只是调了一下才A。
设f[i]为前i个人的战斗力最大值,s[i]为前i个人战斗力的和。易得:
f[i]=max{f[j]+a(s[i]-s[j])^2+b(s[i]-s[j])+c}(j<i)
=max{f[j]+as[i]^2-2as[i]s[j]+as[j]^2+bs[i]-bs[j]+c}
设X[i]=as[i]^2,Y[i]=bs[i],则原式
=max{f[j]+X[i]-2as[i]s[j]+X[j]+Y[i]-Y[j]+c}
设P[i]=X[i]+Y[i],Q[i]=X[i]-Y[i],则原式
=max{f[j]+P[i]+Q[i]-2as[i]s[j]+c}
则f[i]=?f[j]+P[i]+Q[i]-2as[i]s[j]+c
则在这个式子里,y=f[j]+Q[j],k=2as[i],x=s[j],b=f[i]-P[i]-c,且y=kx+b。
由于是取max,所以是维护一个上凸包,所以维护一个斜率只降不升的单调队列就可以了。
其中每个点的坐标为(xi,yi)=(s[i],f[i]+Q[i])(可以从最后那个x和y的表达式看出来)。
code:
%:pragma GCC optimize() #include<bits/stdc++.h> #define sqr(x) ((x)*(x)) #define LL long long using namespace std; ; const double inf=1e18; int n,l,r; LL A,B,C,ratio,s[N],X[N],Y[N],P[N],Q[N],f[N]; struct point { LL x,y; point() {} point(LL _x,LL _y):x(_x),y(_y) {} }st[N]; inline int read() { ,f=; char ch=getchar(); :,ch=getchar(); +ch-',ch=getchar(); return x*f; } double slope(point u,point v) { return u.x==v.x?(u.y<v.y?inf:-inf):1.0*(v.y-u.y)/(v.x-u.x); } LL get(LL k) { ])>1.0*k) l++; return st[l].y-k*st[l].x; } void insert(point cur) { ],st[r])<slope(st[r-],cur)) r--; st[++r]=cur; } int main() { n=read(),A=read(),B=read(),C=read(),ratio=A*,s[]=; ; i<=n; i++) s[i]=s[i-]+read(); ; i<=n; i++) X[i]=A*sqr(s[i]); ; i<=n; i++) Y[i]=B*s[i]; ; i<=n; i++) P[i]=X[i]+Y[i]; ; i<=n; i++) Q[i]=X[i]-Y[i]; l=,r=,st[++r]=point(,); ; i<=n; i++) { f[i]=get(ratio*s[i])+P[i]+C; insert(point(s[i],f[i]+Q[i])); } printf("%lld\n",f[n]); ; }
[luogu P3628] [APIO2010]特别行动队的更多相关文章
- P3628 [APIO2010]特别行动队(斜率优化dp)
P3628 [APIO2010]特别行动队 设$s[i]$为战斗力前缀和 显然我们可以列出方程 $f[i]=f[j]+a*(s[i]-s[j])^{2}+b*(s[i]-s[j])+c$ $f[i]= ...
- [洛谷P3628] [APIO2010]特别行动队
洛谷题目链接:[APIO2010]特别行动队 题目描述 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动 ...
- P3628 [APIO2010]特别行动队
\(\color{#0066ff}{ 题目描述 }\) 你有一支由 \(n\) 名预备役士兵组成的部队,士兵从 \(1\) 到 \(n\) 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑 ...
- 洛谷P3628 [APIO2010]特别行动队(动态规划,斜率优化,单调队列)
洛谷题目传送门 安利蒟蒻斜率优化总结 由于人是每次都是连续一段一段地选,所以考虑直接对\(x\)记前缀和,设现在的\(x_i=\)原来的\(\sum\limits_{j=1}^ix_i\). 设\(f ...
- 洛谷P3628 [APIO2010]特别行动队(斜率优化)
传送门 先写出转移方程$$dp[i]=max\{dp[j]+a*(sum[i]-sum[j])^2+b*(sum[i]-sum[j])+c\}$$ 假设$j$比$k$更优,则有$$dp[j]+a*(s ...
- 洛谷P3628 [APIO2010]特别行动队 斜率优化
裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...
- 洛谷 P3628 [APIO2010]特别行动队
题意简述 将n个士兵分为若干组,每组连续,编号为i的士兵战斗力为xi 若i~j士兵为一组,该组初始战斗力为\( s = \sum\limits_{k = i}^{j}xk \),实际战斗力\(a * ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)
dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...
随机推荐
- 良品铺子:“新零售”先锋的IT必经之路
良品铺子:“新零售”先锋的IT必经之路 云计算 大数据 CIO班 CIO 互联网+ 物联网 电子政务 2017-12-29 09:25:34 来源:互联网抢沙发 摘要:2017年被称为“新零售”元年 ...
- HDU 5988 Coding Contest(浮点数费用流)
http://acm.split.hdu.edu.cn/showproblem.php?pid=5988 题意:在acm比赛的时候有多个桌子,桌子与桌子之间都有线路相连,每个桌子上会有一些人和一些食物 ...
- 测试char,varchar存储
-- -- 表的结构 `user` -- DROP TABLE IF EXISTS `user`; CREATE TABLE IF NOT EXISTS `user` ( `id` int(11) N ...
- 数据库 Mysql 使用,优化,索引
数据库事务的隔离级别,由低到高 : READ UNCOMMITTED(读未提交数据):允许事务读取未被其他事务提交的变更数据,会出现脏读.不可重复读和幻读问题. READ COMMITTED(读已提交 ...
- ssh REMOTE HOST IDENTIFICATION HAS CHANGED!
连接到docker的时候,有时因为image重新buid过,就提示 It is also possible that a host key has just been changed. 不让连接. 解 ...
- Golang获得执行文件的当前路径
运行环境:golang1.9.2+win7x64golang1.9.2+centos6.5×64 /*获取当前文件执行的路径*/ func GetCurPath() string { file, _ ...
- Basic Calculator 基本计算器
2018-09-27 22:02:36 一.Basic Calculator II 问题描述: 问题求解: sign用来保存前一个符号,用num来记录数字,如果碰到一个符号或者到达结尾,则需要进行入栈 ...
- Java访问Redis
Redis的数据类型总共有如下几种 1.String(字符串) 2.List(列表),字符串列表,有序 3.Hash(哈希),可以存储类似于数据库的表结构 4.Set(集合),无序,不可重复 5.ZS ...
- PHP curl是什么
PHP curl是什么 一.总结 一句话总结:PHP支持的由Daniel Stenberg创建的libcurl库允许你与各种的服务器使用各种类型的协议进行连接和通讯. libcurl库 允许你与各种的 ...
- Win7无法保存共享帐户密码
每次机器重启完之后,网络共享的密码总是要重新输入. [记住我的凭据]选项不起作用. 查到了下面百度经验的文章,挺靠谱的. https://jingyan.baidu.com/article/59a01 ...