matlab做聚类分析
说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可。使用方法:kmeans(输入矩阵,分类个数k)。
转载一:
MATLAB提供了两种方法进行聚类分析:
1、利用 clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;
2、分步聚类:( 1)用 pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;( 2)用 linkage函数定义变量之间的连接;( 3)用 cophenetic函数评价聚类信息;( 4)用 cluster函数进行聚类。
下边详细介绍两种方法:
1、一次聚类
Clusterdata函数可以视为 pdist、 linkage与 cluster的综合,一般比较简单。
【 clusterdata函数:
调用格式: T=clusterdata(X,cutoff)
等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 】
2、分步聚类
( 1)求出变量之间的相似性
用 pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用 zscore函数对其标准化
【 pdist函数: 调用格式: Y=pdist(X,’metric’)
说明: X是 M*N矩阵,为由 M个样本组成,每个样本有 N个字段的数据集
metirc取值为:’ euclidean’:欧氏距离(默认) ‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离 … 】
pdist生成一个 M*(M-1)/2个元素的行向量,分别表示 M个样本两两间的距离。这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用 squareform函数将其转化为方阵,其中 x(i,j)表示第 i个样本与第 j个样本之的距离,对角线均为 0.
( 2)用 linkage函数来产生聚类树
【 linkage函数: 调用格式: Z=linkage(Y,’method’)
说明: Y为 pdist函数返回的 M*(M-1)/2个元素的行向量,
method可取值: ‘single’:最短距离法(默认); ’complete’:最长距离法;
‘average’:未加权平均距离法; ’weighted’:加权平均法
‘centroid’: 质心距离法; ‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法) 】
返回的 Z为一个 (M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了 M个样本以外,对于每次新产生的类,依次用 M+1、 M+2、 …来标识。
为了表示 Z矩阵,我们可以用更直观的聚类数来展示, 方法为: dendrogram(Z), 产生的聚类数是一个 n型树,最下边表示样本,然后一级一级往上聚类,最终成为最顶端的一类。纵轴高度代表距离列。
另外,还可以设置聚类数最下端的样本数,默认为 30,可以根据修改 dendrogram(Z,n)参数 n来实现, 1<n<M。 dendrogram(Z,0)则表 n=M的情况,显示所有叶节点。
( 3)用 cophenetic函数评价聚类信息
【 cophenet函数: 调用格式: c=cophenetic(Z,Y)
说明:利用 pdist函数生成的 Y和 linkage函数生成的 Z计算 cophenet相关系数。】
cophene检验一定算法下产生的二叉聚类树和实际情况的相符程度 ,就是检测二叉聚类树中各元素间的距离和 pdist计算产生的实际的距离之间有多大的相关性,另外也可以用 inconsistent表示量化某个层次的聚类上的节点间的差异性。
( 4)最后,用 cluster进行聚类,返回聚类列。
转载二:
Matlab 提供了两种方法进行聚类分析。
一种是利用 clusterdata 函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;
另一种是分步聚类:(1 )找到数据集合中变量两两之间的相似性和非相似性,用pdist 函数计算变量之间的距离;(2 )用 linkage 函数定义变量之间的连接;(3 )用 cophenetic 函数评价聚类信息;(4 )用cluster 函数创建聚类。
1 .Matlab 中相关函数介绍
1.1 pdist 函数
调用格式:Y=pdist(X,’metric’)
说明:用 ‘metric’ 指定的方法计算 X 数据矩阵中对象之间的距离。’
X :一个m ×n 的矩阵,它是由m 个对象组成的数据集,每个对象的大小为n 。
metric’ 取值如下:
‘euclidean’ :欧氏距离(默认);‘seuclidean’ :标准化欧氏距离;
‘mahalanobis’ :马氏距离;‘cityblock’ :布洛克距离;
‘minkowski’ :明可夫斯基距离;‘cosine’ :
‘correlation’ : ‘hamming’ :
‘jaccard’ : ‘chebychev’ :Chebychev 距离。
1.2 squareform 函数
调用格式:Z=squareform(Y,..)
说明: 强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。
1.3 linkage 函数
调用格式:Z=linkage(Y,’method’)
说 明:用‘method ’参数指定的算法计算系统聚类树。
Y :pdist 函数返回的距离向量;
method :可取值如下:
‘single’ :最短距离法(默认); ‘complete’ :最长距离法;
‘average ’:未加权平均距离法; ‘weighted ’: 加权平均法;
‘centroid’ :质心距离法; ‘median’ :加权质心距离法;
‘ward’ :内平方距离法(最小方差算法)
返回:Z 为一个包含聚类树信息的(m-1 )×3 的矩阵。
1.4 dendrogram 函数
调用格式:[H ,T ,…]=dendrogram(Z,p ,…)
说明:生成只有顶部p 个节点的冰柱图(谱系图)。
1.5 cophenet 函数
调用格式:c=cophenetic(Z,Y)
说明:利用pdist 函数生成的Y 和linkage 函数生成的Z 计算cophenet 相关系数。
1.6 cluster 函数
调用格式:T=cluster(Z,…)
说明:根据linkage 函数的输出Z 创建分类。
1.7 clusterdata 函数
调用格式:T=clusterdata(X,…)
说明:根据数据创建分类。
T=clusterdata(X,cutoff) 与下面的一组命令等价:
Y=pdist(X,’euclid’);
Z=linkage(Y,’single’);
T=cluster(Z,cutoff);
2. Matlab 程序
2.1 一次聚类法
X=[11978 12.5 93.5 31908;…;57500 67.6 238.0 15900];
T=clusterdata(X,0.9)
2.2 分步聚类
Step1 寻找变量之间的相似性
用pdist 函数计算相似矩阵,有多种方法可以计算距离,进行计算之前最好先将数据用zscore 函数进行标准化。
X2=zscore(X); % 标准化数据
Y2=pdist(X2); % 计算距离
Step2 定义变量之间的连接
Z2=linkage(Y2);
Step3 评价聚类信息
C2=cophenet(Z2,Y2); //0.94698
Step4 创建聚类,并作出谱系图
T=cluster(Z2,6);
H=dendrogram(Z2);
分类结果:{ 加拿大} ,{ 中国,美国,澳大利亚} ,{ 日本,印尼} ,{ 巴西} ,{ 前苏联}
转载:http://blog.csdn.net/xuezhisd/article/details/8860485
matlab做聚类分析的更多相关文章
- matlab做曲线拟合
python 做曲线拟合 https://blog.csdn.net/qq_16583687/article/details/72723708 matlab做拟合函数,可以在命令行输入:数据x,数据y ...
- 用MATLAB做T检验(ttest)
t-检验: t-检验,又称student‘s t-test,可以用于比较两组数据是否来自同一分布(可以用于比较两组数据的区分度),假设了数据的正态性,并反应两组数据的方差在统计上是否有显著差异. ma ...
- matlab做gaussian高斯滤波
原文链接:https://blog.csdn.net/humanking7/article/details/46826105 核心提示 在Matlab中高斯滤波非常方便,主要涉及到下面两个函数: 函数 ...
- MATLAB做主成分分析(PCA)
简单的主成分分析.第一次见识PCA,我的认识是,尽量用更少的维度来描述数据,以达到理想(虽不是最好,但是''性价比''最高)的效果. %% 主成分分析降维 clear; % 参数初始化 inputfi ...
- 如何使用Matlab做数字信号处理的仿真1
例如 第三版数字信号处理P51 -1.14习题时域离散信号的相关性研究x(n)=Asin(ωn)+u(n),其中ω=π/16,u(n)是白噪声,现要求 ⑴.产生均值为0,功率P=0.1的均匀分布白噪声 ...
- 利用RNAseq数据做聚类分析
library(ConsensusClusterPlus)library(factoextra)library(cluster)library(NbClust)# 读入数据data = read.ta ...
- 使用clusterprofile做聚类分析
library(clusterProfiler ) #cat test.txt gene_symbol EXOSC10ARHGEF10LVWA5B1SRRM1PTAFRCSMD2SH3GLB1GBP6 ...
- 数学建模及机器学习算法(一):聚类-kmeans(Python及MATLAB实现,包括k值选取与聚类效果评估)
一.聚类的概念 聚类分析是在数据中发现数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好.我们事先并不知道数据的正确结果(类标),通过聚类算法来发现和挖掘数据本身的结 ...
- [综]聚类Clustering
Annie19921223的博客 [转载]用MATLAB做聚类分析 http://blog.sina.com.cn/s/blog_9f8cf10d0101f60p.html Free Mind 漫谈 ...
随机推荐
- java基础 逻辑
1, 用for循环打印一个4*5的矩形 public class Test { public static void main(String[] args){ for (int i = 1; i &l ...
- callback源码分析——callbacks
uvm的callback必须是提供者有预见性的留一些方法在function前后,这样在使用的时候,进行遍历调度即可 设计者,需要从uvm_callback定义一个基类,只定义function原型,定义 ...
- node.js中ws模块创建服务端和客户端,网页WebSocket客户端
首先下载websocket模块,命令行输入 npm install ws 1.node.js中ws模块创建服务端 // 加载node上websocket模块 ws; var ws = require( ...
- 【Linux学习九】负载均衡
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.高并发 随着应用访问量的增加,带来高并发处理问题. 具体有两个: ...
- java 序列化和反序列化的实现原理
老是听说序列化反序列化,就是不知道到底什么是序列化,什么是反序列化?今天就在网上搜索学习一下,这一搜不要紧,发现自己曾经用过,竟然不知道那就是JDK类库中序列化和反序列化的API. ----什么是序列 ...
- oracle 游标/函数/存储过程/触发器 表空间
--存储过程,循环create or replace procedure delTables(ename t_emp.ename%TYPE)AScon number;i NUMBER := 1;tab ...
- CSR8670的A2DP与AVRCP的应用笔记
1. A2DP1.1. 基本概念阅读A2DP SPEC V12的1.1章,可知: Advanced Audio Distribution Profile(A2DP)典型应用是立体声音乐播放器的音乐到耳 ...
- Codeforce 296A - Yaroslav and Permutations
Yaroslav has an array that consists of n integers. In one second Yaroslav can swap two neighboring a ...
- GoldenGate实时投递数据到大数据平台(3)- Apache Flume
Apache Flume Flume NG是一个分布式.可靠.可用的系统,它能够将不同数据源的海量日志数据进行高效收集.聚合,最后存储到一个中心化数据存储系统中,方便进行数据分析.事实上flume也可 ...
- QMenu 设置菜单图标 & 生成菜单树
效果图 源码 .h 文件 protected slots: void onMenuTriggered(QAction*); .cpp 文件 // 菜单 QMenu *pMenu = new QMenu ...