快速傅里叶变换及其C程序

《快速傅里叶变换及其C程序》是中国科学技术大学出版社出版的。本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义、存在条件及其性质,离散傅里叶变换(DFT)的定义、性质及由离散引起的频谱混叠和渗漏,快速傅里叶变换(FFT)算法的基本原理和复序列基2算法及其实用程序,并以此为基础,给出了实序列DFT、正弦变换、余弦变换、傅里叶级数、谱函数近似、功率谱估计、卷积和相关等的快速算法和实用程序,给出了 2D—DFT的行列算法、二维实序列2D—DFT的行列算法和存储技术、3D—DFT的似行列算法、3D—DFT实序列降维算法和它们的实用程序。这些皆容易推广应用于更高维DFT的快速计算。
 

1内容简介

本书可作为理工科研究生、本科高年级学生,特别是计算数学和应用软件、数字信号处理专业学生的教材或参考书,也可供相关工程技术人员参考。

2目录

第1章 Fourier变换
1.1 周期函数的Fourier级数
1.1.1 三角级数及其正交性
1.1.2 周期函数的Fourier级数
1.1.3 Fourier级数的收敛问题
1.1.4 函数的Fourier级数展开
1.1.5 Fourier级数的复数形式
1.1.6 周期函数的最佳逼近
1.2 Fourier积分
1.2.1 Fourier级数和Fourier积分
1.2.2 Fourier积分的收敛问题
1.2.3 Fourier积分的复数形式
1.3 Fourier变换
1.3.1 Fourier变换的定义
1.3.2 Fourier变换存在条件
1.3.3 正弦变换和余弦变换
1.3.4 Fourier变换的常用形式
1.4 Fourier变换实例
1.4.1 初等函数Fourier变换实例
1.4.2 广义函数简介
1.4.3 δ函数及其谱函数
1.5 Fourier变换的对称性
1.5.1 对称关系
1.5.2 双实函数的Fourier变换
1.6 Fourier变换的性质
1.6.1 基本性质
1.6.2 卷积和相关定理
1.6.3 Parseval定理
习题一
第2章 离散Fourier变换
2.1 离散时间序列的Fourier变换
2.1.1 离散时间序列的Fourier变换
2.1.2 DTFT的基本性质
2.1.3 卷积和相关定理
2.2 离散Fourier变换定义
2.2.1 Fourier变换的离散化
2.2.2 离散Fourier变换的定义
2.2.3 离散Fourier变换的常用形式
2.3 DFT的性质
2.3.1 DFT的基本性质
2.3.2 离散卷积和离散相关
2.3.3 一些特殊序列的DFT
2.3.4 实序列DFT技术
2.4 离散正弦变换和离散余弦变换
2.4.1 离散正弦变换
2.4.2 离散余弦变换
2.5 离散Fourier级数
2.5.1 离散最佳平方逼近
2.5.2 离散Fourier级数
2.6 Fourier变换的离散误差
2.6.1 离散取样与频谱混叠
2.6.2 有限窗宽和频谱渗漏
2.6.3 连续与离散Fourier变换的关系
习题二
第3章 DFT快速计算(FFT)
第4章 卷积及其快速算法
第5章 多维Fourier变换及其快速算法
附录 程序索引
参考资料

研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>的更多相关文章

  1. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  2. FFT算法实现——基于GPU的基2快速傅里叶变换

    最近做一个东西,要用到快速傅里叶变换,抱着蛋疼的心态,自己尝试写了一下,遇到一些问题. 首先看一下什么叫做快速傅里叶变换(FFT)(来自Wiki): 快速傅里叶变换(英语:Fast Fourier T ...

  3. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  4. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  5. 快速傅里叶变换(FFT)详解

    本文只讨论FFT在信息学奥赛中的应用 文中内容均为个人理解,如有错误请指出,不胜感激 前言 先解释几个比较容易混淆的缩写吧 DFT:离散傅里叶变换—>$O(n^2)$计算多项式乘法 FFT:快速 ...

  6. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  7. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  8. 快速傅里叶变换(Fast-Fourier Transform,FFT)

    数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...

  9. 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w

    现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...

随机推荐

  1. ***php进行支付宝开发中return_url和notify_url的区别分析

    本文实例分析了php进行支付宝开发中return_url和notify_url的区别.分享给大家供大家参考.具体分析如下: 在支付宝处理业务中return_url,notify_url是返回些什么状态 ...

  2. jquery attr方法和prop方法获取input的checked属性问题

    jquery attr方法和prop方法获取input的checked属性问题   问题:经常使用jQuery插件的attr方法获取checked属性值,获取的值的大小为未定义,此时可以用prop方法 ...

  3. Codeforces 1114F Please, another Queries on Array? 线段树

    Please, another Queries on Array? 利用欧拉函数的计算方法, 用线段树搞一搞就好啦. #include<bits/stdc++.h> #define LL ...

  4. HTML编码规范 - (WEB前端命名规范)

    HTML编码规范 (一)命名规则: 头:header 内容:content/container 尾:footer 导航:nav 侧栏:sidebar 栏目:column 页面外围控制整体布局宽度:wr ...

  5. 【noip模拟赛7】足球比赛 树

    描述 在2009的中国城市足球比赛中,在2^N支队中,有一些队在开赛前宣布了退出比赛.比赛采取的是淘汰赛.比如有4支队伍参加,那么1队和2队比赛,3队和4队赛,然后1队和2队的胜者与3队和4队的胜者争 ...

  6. 097实战 关于ETL的几种运行方式

    一:代码部分 1.新建maven项目 2.添加需要的java代码 3.书写mapper类 4.书写runner类 二:运行方式 1.本地运行 2.集群运行 3.本地提交集群运行 三:本地运行方式 1. ...

  7. python selenium-webdriver 元素定位(三)

    上两篇的博文中介绍了python selenium的环境搭建和编写的第一个自动化测试脚本,从第二篇的例子中看出来再做UI级别的自动化测试的时候,有一个至关重要的因素,那就是元素的定位,只有从页面上找到 ...

  8. EF连接字符串小问题记录

    1.EFDbContext”不包含必需的 providerName 特性: <connectionStrings> <add name="EFDbContext" ...

  9. asp.net core模块学习

    一.配置管理 二.管道 三.认证与授权 四.MVCDemo 五.IdentityServer4 一.配置管理 1,读取内存配置 using System; using Microsoft.Extens ...

  10. kolla之docker私有仓库创建

    kolla镜像自从P版以后就没有向之前版本直接下载一个tar然后放入仓库那么简单了. 正式开始搭建仓库: 1.启动仓库容器 docker run  -d -v /opt/registry:/var/l ...