K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。

MLlib实现K-Means算法的原理是,运行多个K-Means算法,每个称为run,返回最好的那个聚类的类簇中心。初始的类簇中心,可以是随机的,也可以是KMean||得来的,迭代达到一定的次数,或者所有run都收敛时,算法就结束。

用Spark实现K-Means算法,首先修改pom文件,引入机器学习MLlib包:

        <dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.0</version>
</dependency>

代码:

import org.apache.log4j.{Level,Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors object Kmeans {
def main(args:Array[String]) = {
// 屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.jetty.server").setLevel(Level.OFF) // 设置运行环境
val conf = new SparkConf().setAppName("K-Means").setMaster("spark://master:7077")
.setJars(Seq("E:\\Intellij\\Projects\\SimpleGraphX\\SimpleGraphX.jar"))
val sc = new SparkContext(conf) // 装载数据集
val data = sc.textFile("hdfs://master:9000/kmeans_data.txt", 1)
val parsedData = data.map(s => Vectors.dense(s.split(" ").map(_.toDouble))) // 将数据集聚类,2个类,20次迭代,形成数据模型
val numClusters = 2
val numIterations = 20
val model = KMeans.train(parsedData, numClusters, numIterations) // 数据模型的中心点
println("Cluster centres:")
for(c <- model.clusterCenters) {
println(" " + c.toString)
} // 使用误差平方之和来评估数据模型
val cost = model.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + cost) // 使用模型测试单点数据
println("Vectors 7.3 1.5 10.9 is belong to cluster:" + model.predict(Vectors.dense("7.3 1.5 10.9".split(" ")
.map(_.toDouble))))
println("Vectors 4.2 11.2 2.7 is belong to cluster:" + model.predict(Vectors.dense("4.2 11.2 2.7".split(" ")
.map(_.toDouble))))
println("Vectors 18.0 4.5 3.8 is belong to cluster:" + model.predict(Vectors.dense("1.0 14.5 73.8".split(" ")
.map(_.toDouble)))) // 返回数据集和结果
val result = data.map {
line =>
val linevectore = Vectors.dense(line.split(" ").map(_.toDouble))
val prediction = model.predict(linevectore)
line + " " + prediction
}.collect.foreach(println) sc.stop
}
}

使用textFile()方法装载数据集,获得RDD,再使用KMeans.train()方法根据RDD、K值和迭代次数得到一个KMeans模型。得到KMeans模型以后,可以判断一组数据属于哪一个类。具体方法是用Vectors.dense()方法生成一个Vector,然后用KMeans.predict()方法就可以返回属于哪一个类。

运行结果:

Cluster centres:
[6.062499999999999,6.7124999999999995,11.5]
[3.5,12.2,60.0]
Within Set Sum of Squared Errors = 943.2074999999998
Vectors 7.3 1.5 10.9 is belong to cluster:0
Vectors 4.2 11.2 2.7 is belong to cluster:0
Vectors 18.0 4.5 3.8 is belong to cluster:1
0.0 0.0 5.0 0
0.1 10.1 0.1 0
1.2 5.2 13.5 0
9.5 9.0 9.0 0
9.1 9.1 9.1 0
19.2 9.4 29.2 0
5.8 3.0 18.0 0
3.5 12.2 60.0 1
3.6 7.9 8.1 0

Spark实现K-Means算法的更多相关文章

  1. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  2. K-means算法

    K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢?  ...

  3. spark Bisecting k-means(二分K均值算法)

    Bisecting k-means(二分K均值算法) 二分k均值(bisecting k-means)是一种层次聚类方法,算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程 ...

  4. Spark中常用的算法

    Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要 ...

  5. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  6. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

  7. [Machine-Learning] K临近算法-简单例子

    k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...

  8. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

  9. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  10. 聚类算法:K-means 算法(k均值算法)

    k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...

随机推荐

  1. python 全栈开发,Day136(爬虫系列之第3章-Selenium模块)

    一.Selenium 简介 selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题 selenium本质是通过驱动浏览器,完全 ...

  2. python 全栈开发,Day120(路由系统, 实例化Flask的参数, 蓝图(BluePrint), before_request after_request)

    昨日内容回顾 1.Flask: from flask import Flask app = Flask(__name__) # 从源码中可以看出,Flask集成的run方法是由werkzeug中的ru ...

  3. git代码提交步骤,教程

    代码提交 代码提交一般有五个步骤: 1.查看目前代码的修改状态 2.查看代码修改内容 3.暂存需要提交的文件 4.提交已暂存的文件 5.同步到服务器 1.     查看目前代码的修改状态 提交代码之前 ...

  4. java快速排序引起的StackOverflowError异常

    写在前面:这篇随笔主要记录一下递归调用引起的虚拟机栈溢出的情况以及通过参数配置了虚拟机栈大小来使递归调用可以顺利执行.并没有对涉及到的一些概念进行详细的解释(因为我自己目前对这些概念并不是特别清楚), ...

  5. Delphi自动适应屏幕分辨率的属性

    https://www.cnblogs.com/zhangzhifeng/category/835602.html 这是个困惑我很长时间的问题,到今天终于得到解决了. 话说Delphi有个很强的窗体设 ...

  6. POJ 3050 Hopscotch【DFS带回溯】

    POJ 3050 题意: 1.5*5的方阵中,随意挑一格,记住这个格子的数字 2.可以上下左右走,走5次,每走一次记录下所走格子的数字 3.经过以上步骤,把所得6个数字连起来,形成一串数字.求共可以形 ...

  7. vue2.0组件传值

    props down   emit up 嘿嘿    如果是第一次接触vue2.0组件传值的肯定很疑惑,这是什么意思(大神总结的,我也就是拿来用用) “down”—>指的是下的意思,即父组件向子 ...

  8. mvn2gradle

    mvn项目根目录下,运行 gradle init --type pom 备注: 1)确保build.gradle, settings.gradle不存在 2)gradle 3.1测试通过 3)修改bu ...

  9. 使用Ztree新增角色和编辑角色回显

    最近在项目中使用到了ztree,在回显时候费了点时间,特记录下来供下次参考. 1.新增角色使用ztree加载权限,由于权限不多,所以使用直接全部加载. 效果图: 具体涉及ztree代码: jsp中导入 ...

  10. URAL - 1495 One-two, One-two 2

    URAL - 1495 这是在dp的专题里写了,想了半天的dp,其实就是暴力... 题目大意:给你一个n,问你在30位以内有没有一个只由1或2 构成的数被 n 整除,如果 有则输出最小的那个,否则输出 ...