[HAOI2018]奇怪的背包 (DP,数论)
[HAOI2018]奇怪的背包
$ solution: $
首先,这一道题目的描述很像完全背包,但它所说的背包总重量是在模P意义下的,所以肯定会用到数论。我们先分析一下,每一个物品可以放无数次,可以达到的背包重量其实就是所有 $ gcd(a[i],P) $ 的倍数。 这一点和天天爱跑步简直神似!因为天天爱跑步中每一个人也可以走无数步,跑到环形(就是模意义下)。
但是这道题目还可以加入多种物品,我们不难发现,如果加入i和j两种物品,它所能达到的重量其实只是在gcd中多加了一个,就是所有 $ gcd(a[i],a[j],P) $ 的倍数。这个性质在加入更多物品后依然成立。所以我们只在乎每种物品加或不加,且状态可以用P的所有约数表示(因为加入物品后能达到的重量一定是所有物品重量和P全部取gcd后的倍数)(我们只需记录这个约数即可)而我们发现P的约数个数小于3000(一般一个数的约数个数不会超过它本身的三分之一次方),所以我们可以用这个状态来完全背包:
我们定义 $ f[i][j] $ 表示已经完全背包跑完前i个物品,现在放入物品的总约数为j的方案数。然后我们发现数据范围太大了,跑不了!这怎么办? 我们发现每一个物品的贡献其实就是它的重量和P的公约数,而P的约数个数小于3000,我们可以在读入的时候就让它和P取gcd,这样会有很多物品的贡献重复(我们开个桶归类)然后每一次都按P的约数来跑完全背包。(注意要将P的约数离散化,即表示为P的第几个约数)
不过这样每一次加入某一些与P的公约数为P的第i个约数的物品时,可以取这多个物品中的某一个或多个(注意可以不选,需要加个1),所以还要乘上一个 $ (2^{物品种类数)}-1) $ (这是因为与P的公约数为P的第i个约数的物品有很多,每一个我都可以选或不选,于是有 $ 2^{物品种类数)} $ 个,然后再减去全部不选的那一种就要减一)。
$ f[i][j]=f[i-1][j]+(1+\sum_{gcd(a[k],a[i])==a[j]}{f[i-1][k]})\times (2^{tot[i]}-1) $
然后处理答案时,我们直接枚举一遍所有P的约数,然后在是这个约数倍数的答案处加上相应贡献即可!(这里有一个小优化,和我们读入一样,我们1~q以内的所有数的答案,其实就是它和P的公约数的答案!)
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define f0 f[now^1]
#define f1 f[now]
#define rg register int
using namespace std;
const int mod=1e9+7;
int n,m,p,tt,now;
int s[3005];
int t[3005];
int g[3005];
int a[1000005];
int pf[1000005];
int f[2][3005];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
inline int gcd(int x,int y){
rg z;
while(y){z=x;x=y,y=z%y;}
return x;
}
inline int find(int x){
rg l=1,r=tt,mid;
while(l<=r){
mid=(l+r)>>1;
if(x<s[mid])r=mid-1;
else l=mid+1;
}return r;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); m=qr(); p=qr(); pf[1]=2;
for(rg i=1;i<=n;++i) a[i]=gcd(qr(),p);
for(rg i=1,j=sqrt(p);i<=j;++i) if(p%i==0)s[++tt]=i;
for(rg i=tt;i;--i) s[++tt]=p/s[i];
for(rg i=1;i<=n;++i) pf[i+1]=(pf[i]<<1)%mod,--pf[i];
for(rg i=1;i<=n;++i) ++t[find(a[i])];
for(rg i=1;i<=tt;++i){
if(!t[i])continue;else now^=1;
for(rg j=1;j<=tt;++j)f1[j]=f0[j];
for(rg j=1;j<=tt;++j){
if(!f0[j])continue;
rg gg=find(gcd(s[i],s[j]));
f1[gg]=(f1[gg]+(ll)f0[j]*pf[t[i]])%mod;
}f1[i]=(f1[i]+pf[t[i]])%mod;
}
for(rg i=1;i<=tt;++i)
for(rg j=1;j<=tt;++j)
if(s[i]%s[j]==0)g[i]=(g[i]+f1[j])%mod;
for(rg i=1;i<=m;++i)
printf("%d\n",g[find(gcd(qr(),p))]);
return 0;
}
[HAOI2018]奇怪的背包 (DP,数论)的更多相关文章
- BZOJ5302 [HAOI2018]奇怪的背包 【数论 + dp】
题目 小 CC 非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 PP ,当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对 PP 取模后的结果. 现在小 CC 有 nn 种体积不同 ...
- [BZOJ5302][HAOI2018]奇怪的背包(DP)
由裴蜀定理得,一个集合S能得到w当且仅当gcd(S+{P})|w. 于是f[i][j]表示前i个物品gcd为j的方案数,发现gcd一定是P的因数,故总复杂度$O(n\sqrt{P}\log P)$(需 ...
- 洛谷P4495 [HAOI2018]奇怪的背包(数论)
题面 传送门 题解 好神仙的思路啊--orzyyb 因为不限次数,所以一个体积为\(V_i\)的物品可以表示出所有重量为\(\gcd(V_i,P)\)的倍数的物品,而所有物品的总和就是这些所有的\(\ ...
- 洛谷 P4495 [HAOI2018]奇怪的背包 解题报告
P4495 [HAOI2018]奇怪的背包 题目描述 小\(C\)非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数\(P\),当他 向这个背包内放入若干个物品后,背包的重量是物品总体积对\(P ...
- 【BZOJ5302】[HAOI2018]奇怪的背包(动态规划,容斥原理)
[BZOJ5302][HAOI2018]奇怪的背包(动态规划,容斥原理) 题面 BZOJ 洛谷 题解 为啥泥萌做法和我都不一样啊 一个重量为\(V_i\)的物品,可以放出所有\(gcd(V_i,P)\ ...
- BZOJ5302: [Haoi2018]奇怪的背包
BZOJ5302: [Haoi2018]奇怪的背包 https://lydsy.com/JudgeOnline/problem.php?id=5302 分析: 方程\(\sum\limits_{i=1 ...
- haoi2018奇怪的背包题解
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5302 对于一个物品,设它体积为v,那么,在背包参数为p的情况下,它能达到gcd(v,p ...
- [HNOI2001] 求正整数 - 背包dp,数论
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. Solution (乍一看很简单却搞了好久?我真是太菜了) 根据因子个数计算公式 若 \(m = \prod p_i^{q_i}\) ...
- [HAOI2018]奇怪的背包
题目 暴力\(dp\)好有道理啊 于是我们来个反演吧 考虑一个体积序列\(\{v_1,v_2,...v_n\}\)能凑成\(w\)的条件 显然是 \[v_1x_1+v_2x_2+...+v_nx_n\ ...
随机推荐
- BZOJ2863[SHOI2012]魔法树——树链剖分+线段树
题目描述 输入 输出 样例输入 4 0 1 1 2 2 3 4 Add 1 3 1 Query 0 Query 1 Query 2 样例输出 3 3 2 树链剖分模板题,路径修改子树查询,注意节点 ...
- BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...
- Spring事务说明与自实现
要使用Springboot的事务其实非常简单,在启动类上添加@EnableTransactionManagement,在Service的类或者方法上使用@Transactional就可以了. 事务本身 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- sql server 小技巧(1) 导入csv数据到sql server
1. 右击 DataBaseName,选择 Tasks->Import Data 2. 选择数据源: Flat File Source , 选择一个csv文件 Advance: 选择所有的列,改 ...
- C# String类&Math类&DateTime类
String类: String a = "abcdefghijklmnopqrstuvwxyz"; int length = a.length; //获取字符串的长度: a = ...
- Activiti 用户任务并行动态多实例(多用户执行流程)
在很多情况下,我们需要多用户共同执行余下流程,比如开会流程: 领导发起开会,选择开会人员(多个) 每个开会人员接收到通知后需要签到(一名用户签到不会影响到另一位用户的签到) 签到完成后则流程结束 如果 ...
- poj 2976(二分搜索+最大化平均值)
传送门:Problem 2976 参考资料: [1]:http://www.hankcs.com/program/cpp/poj-2976-dropping-tests-problem-solutio ...
- 清除ul li里面的浮动并让ul自适应高度的一个好办法
有时候会遇到ul li列表里面的东西会用到浮动,这个时候ul的高度就不会被撑开,这怎么办呢? 1)最笨的方法就是设置ul的高度,但这种方法很死板,高度不能自适应 2)有次我试着在ul里面加一个清除浮动 ...