Problem:

the important frequency information is lack of effective modelling.

?? what is frequency information in time series? and why other models don't model this kind of frequency information?

frequency learning

we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting

INTRODUCTION

1. two types of time series analysis methods:

与其这样说不如说time series只有两个维度,时间维度和频率维度。

time-domain methods: analyze correlations among time series

frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;

2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.

MODEL

Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.

解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。

该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.

Residual classification flow: classification - supervised learning;

a multilayer perceptron + a residual learning method.

?? 在这里residual learning起了什么作用呢。

Multi-frequency long short term memory:

sub-series + lstm

How to evaluate the performance of models:

MAPE: mean absolute percentage error;

RMSE: root mean square error.

INTERPRETATION

the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions

增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?

SUPPLEMENTARY KNOWLEDGE

1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.

2. frequency-domain methods:

Fourier transform, wavelet transform

原理是把时域数据转换到频域

时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。

PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章

  1. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  2. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  3. 微软职位内部推荐-Service Engineer II for Azure Cloud Network

    微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...

  4. PP: Imaging time-series to improve classification and imputation

    From: University of Maryland encode time series as different types of images. reformulate features o ...

  5. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  6. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  9. Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. 痞子衡嵌入式:ARM Cortex-M内核那些事(6)- 系统堆栈机制

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是ARM Cortex-M堆栈机制. 今天给大家分享的这篇依旧是2016年之前痞子衡写的技术文档,花了点时间重新编排了一下格式.前面痞子衡 ...

  2. Eversipn STT-MRAM的MJT细胞

    业界一直在寻求取代SRAM.其中之一包括自旋转移力矩MRAM(STT-MRAM).新的存储器带来了一些大胆的主张.例如STT-MRAM具有SRAM的速度和闪存的无波动性,具有无限的耐用性. 图1.ST ...

  3. jdk-8u241各系统版本

    今天下载jdk8的时候汇总了linux/mac/windows操作系统的安装包 链接: https://pan.baidu.com/s/105wtrimc1liThGxsZIv7-A 密码: v8lc ...

  4. MTK迁移Oracle单库

    MTK迁移Oracle单库 一. Mtk安装 1.1     安装jdk 要求jdk版本在1.7以上 安装完jdk后将需要的数据库jdbc驱动拷贝到$JAVA_HOME/jre/lib/ext  目录 ...

  5. 使用UCSC Genome Browser下载人类所有mRNA序列

    打开UCSC Genome Browser官网.网址:http://genome.ucsc.edu/ 点击导航栏的Genome Data 在新的页面中,点击human,可快速定位至页面中人类基因组数据 ...

  6. 关于GC(垃圾回收)

    当我用new创建一个对象时,当可分配的内存不足GC就会去回收未使用的对象,但是GC的操作是非常复杂的,会占用很多CPU时间,对于移动设备来说频繁的垃圾回收会严重影响性能.下面的建议可以避免GC频繁操作 ...

  7. C++ const和constexpr

    const expression , 常量表达式 , 在<C++ Primer>的定义:值不会改变并且在编译过程就能得到计算结果的表达式.   它要求两点:值不会改变,编译过程得到结果. ...

  8. C# SQLITE 使用文档

    https://www.devart.com/dotconnect/sqlite/docs/Devart.Data.SQLite~Devart.Data.SQLite_namespace.html 有 ...

  9. CentOS 7 版本配置salt-master salt-minion

    下载saltshaker_api.git [root@linux-node1 salt]# cd $HOME [root@linux-node1 salt]# git clone https://gi ...

  10. [SDOI2010]粟粟的书架 [主席树]

    [SDOI2010]粟粟的书架 考虑暴力怎么做 显然是提取出来 (x2-x1+1)*(y2-y1+1) 个数字拿出来 然后从大到小排序 然后就可以按次取数了- 然而接下来看数据范围 \(50\%\ r ...