PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem:
the important frequency information is lack of effective modelling.
?? what is frequency information in time series? and why other models don't model this kind of frequency information?
frequency learning
we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting
INTRODUCTION
1. two types of time series analysis methods:
与其这样说不如说time series只有两个维度,时间维度和频率维度。
time-domain methods: analyze correlations among time series
frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;
2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.
MODEL
Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.
解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。
该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.
Residual classification flow: classification - supervised learning;
a multilayer perceptron + a residual learning method.
?? 在这里residual learning起了什么作用呢。
Multi-frequency long short term memory:
sub-series + lstm
How to evaluate the performance of models:
MAPE: mean absolute percentage error;
RMSE: root mean square error.
INTERPRETATION
the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions
增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?
SUPPLEMENTARY KNOWLEDGE
1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.
2. frequency-domain methods:
Fourier transform, wavelet transform
原理是把时域数据转换到频域
时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。
PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- 微软职位内部推荐-Service Engineer II for Azure Cloud Network
微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...
- PP: Imaging time-series to improve classification and imputation
From: University of Maryland encode time series as different types of images. reformulate features o ...
- ### Paper about Event Detection
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...
- Deep Learning-Based Video Coding: A Review and A Case Study
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...
- Github项目推荐-图神经网络(GNN)相关资源大列表
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
- Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
随机推荐
- 学习 Vim 命令总结
学习 Vim 命令总结 可以使用 vscode-vim 扩展,但是要注意一些ctrl+字母的快捷键会无效,必须去掉冲突的快捷键 esc 回到普通模式 i 普通模式进入插入模式 : 进入命令模式 :wa ...
- 如何使用maven开启一个webapp项目
1.使用maven创建好一个webapp项目 2.pom.xml: 第一步:修改版本 <properties> <project.build.sourceEncoding>UT ...
- Windows10设置系统参数
屏幕分辨率设置 电源屏幕显示时间 投影可以进行手机投影到电脑进行操作,远程桌面可以进行远程访问,如云服务器 设置桌面图标和背景 设置默认应用 安装软件,必备的几项软件 --其中个人认为(1)(2)是 ...
- 数据分析----天气预报走向(pygal)
#!usr/bin/env python #-*- coding:utf-8 _*- """ @author:Administrator @file: 可视化天气预报.p ...
- C++关于锁的总结(一)
C++关于锁的总结(一) 线程中的锁分为两种,互斥锁和共享锁. 相关的头文件有<mutex>,<shared_mutex>,前者具有std::unique_lock操作,用于实 ...
- vue(七)--监听属性(watch)
1.watch:用来监听每一个属性的变化 2.watch这个对象里面都是函数,函数的名称是data中的属性名称,watch中的函数不需要调用 3.当属性发生改变那么就会触发watch函数,每个函数都会 ...
- Jenkins+robotframework持续集成环境(二)
配置Jenkins上的robotframework环境 一.添加robot插件 需要导一个robot framework 的包,导包方式如下: 1.进入插件管理页面,选择“可选插件”,在右侧搜索栏搜索 ...
- maven 上传 jar 到本地私服
You'll need to add a RankLib <dependency> tag set to your existing <dependencies> list. ...
- .net core 简单定时程序
using Microsoft.Extensions.Configuration; using Microsoft.Extensions.Hosting; using Orleans; using S ...
- Python学习笔记一:变量、函数
变量.函数是Python语言的最基本单元,下面是我作为初学者的当前理解,随着学习的深入今后会做刷新. 变量:表示操作对象是谁. 变量的方法:表示能做什么事情. 如何设计变量:先分析需要解决的问题,基于 ...