Problem:

the important frequency information is lack of effective modelling.

?? what is frequency information in time series? and why other models don't model this kind of frequency information?

frequency learning

we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting

INTRODUCTION

1. two types of time series analysis methods:

与其这样说不如说time series只有两个维度,时间维度和频率维度。

time-domain methods: analyze correlations among time series

frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;

2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.

MODEL

Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.

解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。

该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.

Residual classification flow: classification - supervised learning;

a multilayer perceptron + a residual learning method.

?? 在这里residual learning起了什么作用呢。

Multi-frequency long short term memory:

sub-series + lstm

How to evaluate the performance of models:

MAPE: mean absolute percentage error;

RMSE: root mean square error.

INTERPRETATION

the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions

增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?

SUPPLEMENTARY KNOWLEDGE

1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.

2. frequency-domain methods:

Fourier transform, wavelet transform

原理是把时域数据转换到频域

时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。

PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章

  1. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  2. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  3. 微软职位内部推荐-Service Engineer II for Azure Cloud Network

    微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...

  4. PP: Imaging time-series to improve classification and imputation

    From: University of Maryland encode time series as different types of images. reformulate features o ...

  5. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  6. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  9. Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. 04.JS逻辑结构

    前言:  学习一门编程语言的基本步骤(01)了解背景知识(02)搭建开发环境(03)语法规范(04)常量和变量(05)数据类型(06)数据类型转换(07)运算符(08)逻辑结构8.逻辑结构——logi ...

  2. Linux下的 Mysql 8.0 yum 安装 并修改密码

    1.MySQL版本: mysql> select @@version;+-----------+| @@version |+-----------+| 8.0.18 |+-----------+ ...

  3. 插入数据失败提示: Setting autocommit to false on JDBC Connection 自动提交失败

    来源:https://blog.csdn.net/qq_42799475/article/details/102742109 今天在执行mybstis的测试时,明明已经写好了插入语句但是数据库没有插入 ...

  4. Centos7之selinux配置

    selinux是一个重要的lunux安全机制,存在于linuxKernel中,默认是开启的,会对用户行为做出多种限制,为了方便操作,有时候需要关闭它: 查看selinux状态:/usr/sbin/se ...

  5. jdk8中接口中的特性

    jdk8中可以定义静态方法(public static)和默认方法(public default),public 可以省略 调用接口中的静态方法时:只能通过接口本身来调用,不能被该接口的实现类来调 调 ...

  6. HAProxy 使用小记

    PS:写在开头,虽然HAProxy优点很多,但是现在网上可参考的HAProxy文档真的少之又少,so,我把最近在项目中使用的心得整理下,供大家参考,如有侵权或错误之处,还请联系更正,谢谢! 好了,下面 ...

  7. Linux centos7 安装 phpMyAdmin

    yum install httpd php mariadb-server –y搭建lamp运行环境之后安装phpMyAdmin遇到的一些问题记录一下 1.官网下载phpMyAdmin压缩包 wget ...

  8. python数据类型(总结篇)

    世界上最容易的事是坚持,最难的事也是坚持.开通博客园已两月有余,但实际上笔者本人的活跃度非常低,痛定思痛,自己选的路含泪也要走下去,继续坚持! 本文承接前几个月的python数据类型系列,完成对字典与 ...

  9. 深入理解 C/C++ sizeof() 运算符

    过去有一段时间一直以为带个括号的 \(sizeof()\) 是 \(C/C++\) 的原生函数QAQ. 其实不然,\(sizeof\) 同位运算符(^|&~!)一样是一种单目运算符,作用于变量 ...

  10. beego的请求数据处理

    我们经常需要获取用户传递的数据,包括 Get.POST 等方式的请求,beego 里面会自动解析这些数据,你可以通过如下方式获取数据: GetString(key string) string Get ...