PP: Multilevel wavelet decomposition network for interpretable time series analysis
Problem:
the important frequency information is lack of effective modelling.
?? what is frequency information in time series? and why other models don't model this kind of frequency information?
frequency learning
we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting
INTRODUCTION
1. two types of time series analysis methods:
与其这样说不如说time series只有两个维度,时间维度和频率维度。
time-domain methods: analyze correlations among time series
frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;
2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.
MODEL
Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.
解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。
该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.
Residual classification flow: classification - supervised learning;
a multilayer perceptron + a residual learning method.
?? 在这里residual learning起了什么作用呢。
Multi-frequency long short term memory:
sub-series + lstm
How to evaluate the performance of models:
MAPE: mean absolute percentage error;
RMSE: root mean square error.
INTERPRETATION
the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions
增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?
SUPPLEMENTARY KNOWLEDGE
1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.
2. frequency-domain methods:
Fourier transform, wavelet transform
原理是把时域数据转换到频域
时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。
PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章
- PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
- 微软职位内部推荐-Service Engineer II for Azure Cloud Network
微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...
- PP: Imaging time-series to improve classification and imputation
From: University of Maryland encode time series as different types of images. reformulate features o ...
- ### Paper about Event Detection
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...
- Deep Learning-Based Video Coding: A Review and A Case Study
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...
- Github项目推荐-图神经网络(GNN)相关资源大列表
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...
- ICLR 2014 International Conference on Learning Representations深度学习论文papers
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...
- Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
随机推荐
- springcloud 项目源码 微服务 分布式 Activiti6 工作流 vue.js html 跨域 前后分离
1.代码生成器: [正反双向](单表.主表.明细表.树形表,快速开发利器)freemaker模版技术 ,0个代码不用写,生成完整的一个模块,带页面.建表sql脚本.处理类.service等完整模块2. ...
- 1.3.5 详解项目中的资源——Android第一行代码(第二版)笔记
所有以drawable开头的文件夹都是用来存放图片的. 所有以mipmap开头的文件夹都是用来存放应用图标的 所有以values开头的文件夹都是用来存放字符串.样式.颜色等配置的, layout文件夹 ...
- ES相关知识
ElkStack介绍 对于日志来说,最常见的需求就是收集.存储.查询.展示,开源社区正好有相对应的开源项目:logstash(收集).elasticsearch(存储+搜索).kibana(展示),我 ...
- jni和线程
JNI官方规范中文版——在程序中集成JVM需要注意的JNI特征 翻译 我们已经讨论了JNI在写本地代码和向本地应用程序中集成JVM时的特征.本章接下来的部分分介绍其它的JNI特征. 8.1 JNI和线 ...
- hive中parquet存储格式数据类型timestamp的问题
当存储格式为parquet 且 字段类型为 timestamp 且 数据用hive执行sql写入. 这样的字段在使用impala读取时会少8小时.建议存储为sequence格式或者将字段类型设置为st ...
- TampeMonkey 关于 youtube的两个插件
一个是 Video Speed Buttons 负责调速 一个是 YouTube Links 负责下载不同分辨率的视频
- Blazor初体验之寻找存储client-side jwt token的方法
https://www.cnblogs.com/chen8854/p/securing-your-blazor-apps-authentication-with-clientside-blazor-u ...
- LeetCode 面试题 02.02. 返回倒数第 k 个节点
题目链接:https://leetcode-cn.com/problems/kth-node-from-end-of-list-lcci/ 实现一种算法,找出单向链表中倒数第 k 个节点.返回该节点的 ...
- Java连载87-酒店管理系统练习、哈希表、函数
一.创建一个酒店的房间管理系统 需求:这个酒店有五层,并且1-2层是标准间,3-4层是双人间,5层是豪华间:我们需要实时的显现各个房间的使用状态,并且我们可以预定某一个房间. package com. ...
- 信号处理之DFT、IDFT
一.DFT之前言部分 由于matlab已提供了内部函数来计算DFT.IDFT,我们只需要会调用fft.ifft函数就行: 二.函数说明: fft(x):计算N点的DFT.N是序列x的长度,即N=len ...