numpy 数组的计算
一、数组和数的计算
数组和数计算,数组中的每个元素和数进行计算
1、加
import numpy as np arr1 = np.arange(12).reshape(3, 4)
print(arr1) # 数组的每个元素和数进行加法运算
arr2 = arr1 + 2
print(arr2)
2、减
import numpy as np arr1 = np.arange(12).reshape(3, 4)
# 数组的每个元素和数进行减法运算
arr2 = arr1 - 2
print(arr2)
3、乘
import numpy as np arr1 = np.arange(12).reshape(3, 4)
# 数组的每个元素和数进行乘法运算
arr2 = arr1 * 2
print(arr2)
4、除
import numpy as np arr1 = np.arange(12).reshape(3, 4)
# 数组的每个元素和数进行除法运算
arr2 = arr1 // 2
print(arr2)
注意:
nan: a/b, a和b都是0
inf: a/b, b是0,a非0
二、数组和数组的计算
1、数组的形状相同
a、加
import numpy as np arr1 = np.arange(12).reshape(3, 4)
arr2 = np.arange(24, 36).reshape(3, 4)
# 数组中对应位置的元素分别相加
arr3 = arr1 + arr2
print(arr3)
b、减
import numpy as np arr1 = np.arange(12).reshape(3, 4)
arr2 = np.arange(24, 36).reshape(3, 4)
# 数组中对应位置的元素分别相减
arr3 = arr1 - arr2
print(arr3)
c、乘
import numpy as np arr1 = np.arange(12).reshape(3, 4)
arr2 = np.arange(24, 36).reshape(3, 4)
# 数组中对应位置的元素分别相乘
arr3 = arr1 * arr2
print(arr3)
d、除
import numpy as np arr1 = np.arange(12).reshape(3, 4)
arr2 = np.arange(24, 36).reshape(3, 4)
# 数组中对应位置的元素分别相除
arr3 = arr1 / arr2
print(arr3)
print(arr3.dtype)
# 数组中的每个元素保留两位小数
arr4 = np.round(arr3, 2)
print(arr4)
2、数组的形状不相同
a、列数相同
import numpy as np arr1 = np.arange(12, 24).reshape(3, 4)
arr2 = np.arange(3, 7).reshape(4,)
# 加
arr3 = arr1 + arr2
print(arr3)
# 减
arr4 = arr2 - arr1
print(arr4)
# 乘
arr5 = arr1 * arr2
print(arr5)
# 除
arr6 = arr1 / arr2
print(arr6)
b、行数相同
import numpy as np arr1 = np.arange(12, 24).reshape(3, 4)
arr2 = np.arange(3, 6).reshape(3, 1)
# 加
arr3 = arr1 + arr2
print(arr3)
# 减
arr4 = arr2 - arr1
print(arr4)
# 乘
arr5 = arr1 * arr2
print(arr5)
# 除
arr6 = arr1 / arr2
print(arr6)
注意:数组的计算遵循numpy的广播原则
三、广播原则
1、官方概念
如果两个数组的后缘维度(从末尾开始计算的维度)的轴长度相符或其中一方的长度为1,则认为它们是广播兼职的。
广播会在缺失和(或)长度为1的维度上进行。
2、自己理解
a.数组求shape
b.从shape的最后一位开始比较
c.1可以看成任意数, 如(2, 2, 3)和(2, 1) 可以进行运算
d.缺失的部分忽略,如(2, 2, 3)和(3,) 可以进行运算
e.运算在缺失或长度为1的维度上进行
四、轴
1.轴:
在numpy中可以理解为方向,使用0,1,2...数字表示
数组shape的index, 0轴 1轴
2.轴长度:
包含数据的条数
数组shape的值
numpy 数组的计算的更多相关文章
- numpy数组常用计算
在说numpy库数组的计算之前先来看一下numpy数组形状的知识: 创建一个数组之后,可以用shape来查看其形状,返回一个元组 例如:a = np.array([[1, 2, 3], [4, 5, ...
- numpy数组的计算
1.数组的形状 查看数组的形状: import numpy as np a = np.array([[1, 2, 3, 4, 5], [5, 6, 7, 8, 9]]) print(a.shape) ...
- Python数据科学手册-Numpy数组的计算,通用函数
Python的默认实现(CPython)处理某些操作非常慢,因为动态性和解释性, CPython 在每次循环必须左数据类型的检查和函数的调度..在编译是进行这样的操作.就会加快执行速度. 通用函数介绍 ...
- Python数据科学手册-Numpy数组的计算:比较、掩码和布尔逻辑,花哨的索引
Numpy的通用函数可以用来替代循环, 快速实现数组的逐元素的 运算 同样,使用其他通用函数实现数组的逐元素的 比较 < > 这些运算结果 是一个布尔数据类型的数组. 有6种标准的比较操作 ...
- Python数据科学手册-Numpy数组的计算:广播
广播可以简单理解为用于不同大小数组的二元通用函数(加减乘等)的一组规则 二元运算符是对相应元素逐个计算 广播允许这些二元运算符可以用于不同大小的数组 更高维度的数组 更复杂的情况,对俩个数组的同时广播 ...
- NumPy(数组计算)
一.介绍 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.主要功能 1)ndarray,一个多维数组结构,高效且节省空间2)无需循环对整组数据进行快速运算的数 ...
- numpy——基础数组与计算
In [1]: import numpy as np In [11]: # 创建数组 a = np.array([1,2,3,4,5]) In [12]: a Out[12]: array([1, 2 ...
- Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数
Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 不再通过遍历,对数组中的元素进行运算,利用frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 ...
- 科学计算三维可视化---Mlab基础(基于Numpy数组的绘图函数)
Mlab了解 Mlab是Mayavi提供的面向脚本的api,他可以实现快速的三维可视化,Mayavi可以通过Mlab的绘图函数对Numpy数组建立可视化. 过程为: .建立数据源 .使用Filter( ...
随机推荐
- linux oops 消息
大部分 bug 以解引用 NULL 指针或者使用其他不正确指针值来表现自己的. 此类 bug 通 常的输出是一个 oops 消息. 处理器使用的任何地址几乎都是一个虚拟地址, 通过一个复杂的页表结构映 ...
- 关于POSTMAN做并发压测
一开始我个人在做测试时用到了POSTMAN,用了两种方式做测试, 第一种: 测试发现这种方式是阻塞排队,我让接口睡两秒,这100次请求间隔就是2秒,是串行执行 于是想到第二种,在一个collectio ...
- Storm使用总结
Strom安装 Strom启动 ./zkServer.sh start 启动nimbus主节点: nohup bin/storm nimbus >> /dev/null & 启动s ...
- Python3 安装pylint 及与PyCharm关联
使用如下命令: pip3 install pylint 安装完后可以看到在你的python3的目录底下的Scripts目录下有pylint.exe了 然后就可以使用pylint 评估你的代码了,如: ...
- 记一次linux磁盘清理 - 已经删除的文件占用了大量磁盘空间
今天开发环境磁盘占满了,导致开发环境上的 nginx .redis 等组件总是报异常. 跳到系统根目录下 cd / 检查磁盘占用情况 df -h 哇,40G硬盘全用完了.看看是哪些文件占了那么多内存. ...
- javaweb项目添加log4j日志
谈到我们在Java程序中经常用的日志,Log4j应该是耳熟能详了.这里先提下slf4j,英文全名是Simple Logging Facade for Java,直面意思是:Java的简单日志门面.sl ...
- DOCKER学习_002:Docker的容器管理
一 Docker的基本信息 前面已经安装了Docker,现在看一下已安装Docker的安装环境以及其他信息 1.1 系统环境 [root@docker-server3 ~]# uname -r -.e ...
- nginx和keeplive实现负载均衡高可用
一. Keeplive服务介绍 Keeplive期初是专门为LVS设计的,专门用来监控LVS集群系统中各个服务节点的状态,后来又加入VRRP的功能,因此除了配合LVS服务以外,也可以作为其他服务(ng ...
- 日志管理-log4j与slf4j的使用
一.概述 1.log4j: Log4j是Apache的一个开源项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件,甚至是套接口服务器.NT的事件记录器.UNIX Sy ...
- FacadePattern(外观模式)-----Java/.Net
外观模式(Facade Pattern)隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口.这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性