Uva437 The Tower of Babylon
https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks. Input The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n. Output For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’ Sample Input 1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0 Sample Output Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
【题解】
考虑a,b,c三个长度哪一个做高,分别用1/2/3表示
dp[i][1/2/3]表示i在最上面,a/b/c作高的最大高度
其实是一个DAG
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
inline void swap(int &a, int &b)
{
int tmp = a;a = b;b = tmp;
}
inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} const int MAXN = + ; struct Node
{
int a,b,c;
int geta(int num)
{
if(num == )return a;
else if(num == )return b;
else return c;
}
int getb(int num)
{
if(num == )return b;
else if(num == )return c;
else return a;
}
int getc(int num)
{
if(num == )return c;
else if(num == )return a;
else return b;
}
}node[MAXN]; int tt, dp[MAXN][MAXN], n; int cmp(Node a, int numa, Node b, int numb)
{
return (a.geta(numa) < b.geta(numb) && a.getb(numa) < b.getb(numb)) || (a.geta(numa) < b.getb(numb) && a.getb(numa) < b.geta(numb));
} int f(int a, int b)
{
if(dp[a][b] != -)return dp[a][b];
dp[a][b] = node[a].getc(b);
for(register int i = ;i <= n;++ i)
{
for(register int j = ;j <= ;++ j)
{
if(cmp(node[i],j,node[a],b))
dp[a][b] = max(dp[a][b], f(i, j) + node[a].getc(b));
}
}
return dp[a][b];
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
++ tt;
memset(dp, -, sizeof(dp));
for(register int i = ;i <= n;++ i)
read(node[i].a), read(node[i].b), read(node[i].c);
int ans = -;
for(register int i = ;i <= n;++ i)
for(register int j = ;j <= ;++ j)
ans = max(ans, f(i, j));
printf("Case %d: maximum height = %d\n", tt, ans);
}
return ;
}
Uva437
Uva437 The Tower of Babylon的更多相关文章
- ACM - 动态规划 - UVA437 The Tower of Babylon
UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...
- [动态规划]UVA437 - The Tower of Babylon
The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...
- UVa437 The Tower of Babylon(巴比伦塔)
题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...
- 【DP】【Uva437】UVA437 The Tower of Babylon
传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 十九 The Tower of Babylon
The Tower of Babylon Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Subm ...
- POJ2241——The Tower of Babylon
The Tower of Babylon Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2207 Accepted: 1 ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
随机推荐
- 5 第k大元素
原题网址:http://www.lintcode.com/zh-cn/problem/kth-largest-element/ 在数组中找到第k大的元素 注意事项 你可以交换数组中的元素的位置 您在真 ...
- LintCode刷题笔记-- A+B problem
标签: 位运算 描述 Write a function that add two numbers A and B. You should not use + or any arithmetic ope ...
- Java MySQL 批量查询数据,每次查询10条
因为 数据量比较多, 比如每次 /** * 批量查询 * @param sourList * @param batchCount * @param userMapper * @return */ pu ...
- 【机器学习】机器学习入门02 - 数据拆分与测试&算法评价与调整
0. 前情回顾 上一周的文章中,我们通过kNN算法了解了机器学习的一些基本概念.我们自己实现了简单的kNN算法,体会了其过程.这一周,让我们继续机器学习的探索. 1. 数据集的拆分 上次的kNN算法介 ...
- 记录下sparkStream的做法(scala)
一直用storm做实时流的开发,之前系统学过spark但是一直没做个模版出来用,国庆节有时间准备做个sparkStream的模板用来防止以后公司要用.(功能模拟华为日常需求,db入库hadoop环境) ...
- windows和ubuntn互传文件
Windows和linux(ubuntu)互传文件简便快捷的方法 现在很多开发和测试的工作环境都是Linux,但测试后期报告的处理一般都是在Windows下完成的,所以需要把结果拿到Windows下. ...
- [C#] 生成 (web): 未能加载文件或程序集“Microsoft.CSharp, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7
有时候编译asp.net会遇到奇怪的错误: 生成 (web): 未能加载文件或程序集"Microsoft.CSharp, Version=4.0.0.0, Culture=neutral, ...
- js数组快速排序/去重
数组的排序 快速排序 思路: (1)在数据集之中,选择一个元素作为”基准”(pivot). (2)所有小于”基准”的元素,都移到”基准”的左边:所有大于”基准”的元素,都移到”基准”的右边. (3) ...
- yum与rpm常用选项
rpm常用的命令组合: rpm 1.对系统中已安装软件的查询-q:查询系统已安装的软件-qa:查询系统所有已安装包-qf:查询一个已经安装的文件属于哪个软件包-ql:查询已安装软件包都安装到何处-qi ...
- Tomcat服务器的安装及配置
学习目标: 了解Tomcat服务器的主要作用 掌握Tomcat服务器的安装与配置 掌握Tomcat安装目录下主要文件夹的作用 jsp的执行流程 1.Web的工作原理流程图:从图中可以看出Tomcat服 ...