Uva437 The Tower of Babylon
https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks. Input The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n. Output For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’ Sample Input 1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0 Sample Output Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
【题解】
考虑a,b,c三个长度哪一个做高,分别用1/2/3表示
dp[i][1/2/3]表示i在最上面,a/b/c作高的最大高度
其实是一个DAG
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
inline void swap(int &a, int &b)
{
int tmp = a;a = b;b = tmp;
}
inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} const int MAXN = + ; struct Node
{
int a,b,c;
int geta(int num)
{
if(num == )return a;
else if(num == )return b;
else return c;
}
int getb(int num)
{
if(num == )return b;
else if(num == )return c;
else return a;
}
int getc(int num)
{
if(num == )return c;
else if(num == )return a;
else return b;
}
}node[MAXN]; int tt, dp[MAXN][MAXN], n; int cmp(Node a, int numa, Node b, int numb)
{
return (a.geta(numa) < b.geta(numb) && a.getb(numa) < b.getb(numb)) || (a.geta(numa) < b.getb(numb) && a.getb(numa) < b.geta(numb));
} int f(int a, int b)
{
if(dp[a][b] != -)return dp[a][b];
dp[a][b] = node[a].getc(b);
for(register int i = ;i <= n;++ i)
{
for(register int j = ;j <= ;++ j)
{
if(cmp(node[i],j,node[a],b))
dp[a][b] = max(dp[a][b], f(i, j) + node[a].getc(b));
}
}
return dp[a][b];
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
++ tt;
memset(dp, -, sizeof(dp));
for(register int i = ;i <= n;++ i)
read(node[i].a), read(node[i].b), read(node[i].c);
int ans = -;
for(register int i = ;i <= n;++ i)
for(register int j = ;j <= ;++ j)
ans = max(ans, f(i, j));
printf("Case %d: maximum height = %d\n", tt, ans);
}
return ;
}
Uva437
Uva437 The Tower of Babylon的更多相关文章
- ACM - 动态规划 - UVA437 The Tower of Babylon
UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...
- [动态规划]UVA437 - The Tower of Babylon
The Tower of Babylon Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...
- UVa437 The Tower of Babylon(巴比伦塔)
题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...
- 【DP】【Uva437】UVA437 The Tower of Babylon
传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 十九 The Tower of Babylon
The Tower of Babylon Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Subm ...
- POJ2241——The Tower of Babylon
The Tower of Babylon Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2207 Accepted: 1 ...
- UVA437-The Tower of Babylon(动态规划基础)
Problem UVA437-The Tower of Babylon Accept: 3648 Submit: 12532Time Limit: 3000 mSec Problem Descrip ...
随机推荐
- GCC 参数详解
转载出处:http://blog.csdn.net/yff1030/article/details/8592077 原文:http://www.cppblog.com/SEMAN/archive/20 ...
- 自定义HtmlHelper扩展方法
核心:通过TagBuilder类实现Html元素的创建 TagBuilder: 前台调用: @Html.Messger("tag","span-tag", @V ...
- 【LGP5112】FZOUTSY
题目 如果是\(hash\)做法的话显然就是把每一个位置后面的\(k\)个位置的hash值拿出来做一个莫队板子就好了 考虑一下牛逼的\(SAM\) 我们完全可以构造出来一棵后缀树,对于每个点找到其祖先 ...
- 05-4-style的代替操作
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- VC文件操作
VC文件操作 重命名文件: 注意: 该操作对文件夹一样有效! CFileFind Finder; CString sOldPath = _T("D:\\tt.txt"); CStr ...
- [JSOI2010]连通数 (dfs或tarjan或bitset)+bitset学习
题目描述 输入格式 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示无边. 输出格式 输出一行一个整数,表示该图的连通数. 样例 样 ...
- 20191005 - New Beginning
真·反思 Before 发现$T1$是约瑟夫,$T2$不清楚,$T3$是算法进阶上的$LCIS$ During得&失 做的不错的地方: 多少想了T1的优化(最后没打完). T3的暴力写得很快也 ...
- Java中"str1.equals(str2)"和"str1==str2"的区别
大家好,这是我的第一篇博客,作为即将入职的学生,我现在的心情是既好奇又兴奋,对未知的职场生活充满了无限的憧憬,也想赶紧对大学生活say goodbye,因为自己的能力现在还比较有限,我想通过博客这个平 ...
- Django-rest Framework(四)
序列化模块时rest-framework的很重要的组成部分 rest-framework序列化模块(核心) 一. 为什么要使用序列化组件? 后台的数据多以后台的对象存在,经过序列化后,就可以格式化 ...
- Matlab---length函数
1.length函数:计算向量或矩阵的长度 2.用法说明 y = length(x) 函数计算指定向量或矩阵的长度y.如果参数变量x是向量,则返回其长度:如果参数变量是非空矩阵,则length(x)与 ...