Codevs 均分纸牌(贪心)
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘
4
9 8 17 6
3
#include<iostream> using namespace std;
int a[];
int main()
{
int n,i,sum=,x=;
cin>>n;
for(i=;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
int ave=sum/n;
for(i=;i<n;i++)
{
if(a[i]!=ave)
{
a[i+]=a[i+]+a[i]-ave;
a[i]=ave;
x++;
}
}
cout<<x<<endl;
}
Codevs 均分纸牌(贪心)的更多相关文章
- code vs 1098 均分纸牌(贪心)
1098 均分纸牌 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 有 N 堆纸牌 ...
- 【洛谷p1031】均分纸牌
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 【题解】P1440 均分纸牌
均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取 ...
- NOIP200205均分纸牌
均分纸牌 描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张 ...
- wikioi 1098 均分纸牌
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,-, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...
- NOIP2002 均分纸牌
题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
- 洛谷P1031 均分纸牌
P1031 均分纸牌 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌 ...
随机推荐
- 大数据技术之HBase
第1章 HBase简介 1.1 什么是HBase HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的子项目来开发维护,用于支持结构化的数据存储. 官方 ...
- 简单的requestAnimationFrame动画
html部分 <div id="test" style="width:1px;height:17px;background:#0f0;">0%< ...
- C++中delete this
Is it legal (and moral) for a member function to say delete this? As long as you’re careful, it’s ok ...
- 如何在云上使用confd+ACM管理敏感数据
在前面的一些文章中,我们介绍了如何在云上安全的存放配置数据,但是上面的方法都是有代码侵入性的,也就是说需要修改应用程序,本文会讲解如何使用 confd+ACM 在不修改代码的情况下动态修改应用所需的配 ...
- Best Time to Sell and Buy Stock
这道题想了很多,但是想多了.这个题思路很简单,如果当前值大于最小值,就计算差,和最大利润值比较. class Solution { public: int maxProfit(vector<in ...
- MySQL运算符和函数
运算符 1.算数运算符 加(+):mysql> SELECT 1+1; 减(-):mysql> SELECT 3-2; 乘(*):mysql> SELECT 2*3; 除(/):my ...
- AT3728 Squirrel Migration
AT3728 Squirrel Migration 就是给每个点分配两个匹配点(自环除外) 考虑最大值 考虑极限情况:每个边的贡献是min(sz[u],sz[v])*2 证明存在方案: 发现,如果哪边 ...
- Git 的两种忽略文件方式 gitignore 和 exclude
Git 的两种忽略文件方式 gitignore 和 exclude .gitignore 不用说了,大家都知道. 有一个 exclude 可能接触比较少. 知道这个功能后发现,用在服务器上非常方便,因 ...
- uni-app原生导航栏使用iconfont图标
在 iconfont 将图标下载之后,会有一个 .ttf 后缀的文件 把它放进 static 文件夹里 然后打开在iconfont下载的 demo_index.html 文件 选择 Unicode ...
- 受控组件 & 非受控组件
在 React 中表单组件可分为两类,受控与非受控组件. 一. 受控组件 设置了 value 的 <input> 是一个受控组件. 对于受控的 <input>,渲染出来的 HT ...