HDU - 3671 Boonie and Clyde (图的割点)
The new generation of Bonnie and Clyde is no longer cold-blooded killers with guns. Due to the boom of internet, they turn to online banks and scheme to hack the safety system. The safety system consists of a number of computers connected by bidirectional cables. Since time is limited, they decide that they will attack exactly two computers A and B in the network, and as a result, other computers won't be able to transmit messages via A and B . The attack is considered successful if there are at least two computers (other than A and B ) that disconnected after the attack.
As they want to minimize the risk of being captured, they need to find the easiest way to destroy the safety system. However, a brief study of the network indicates that there are many ways to achieve their objective; therefore they kidnapped the computer expert, you, to help with the calculation. To simplify the problem, you are only asked to tell them how many ways there are to destroy the safety system.
InputThere are multiple test cases in the input file. Each test case starts with two integers N (3<=N<=1000) and M (0<=M<=10000) , followed by M lines describing the connections between the N computers. Each line contains two integers A , B (1<=A, B<=N) , which indicates that computer A and B are connected by a bidirectional cable.
There is a blank line between two successive test cases. A single line with N = 0 and M = 0 indicates the end of input file.OutputFor each test case, output one integer number representing the ways to destroy the safety system in the format as indicated in the sample output.Sample Input
4 4
1 2
2 3
3 4
4 1 7 9
1 2
1 3
2 3
3 4
3 5
4 5
5 6
5 7
6 7 0 0
Sample Output
Case 1: 2
Case 2: 11 题意:
删除两个点,使图不联通,求方案数.
思路:
枚举第一个点,用割点判断第二点就行了.
注意删除第一个点之后剩下联通块内部点的个数为1的情况.
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn],cnt;
struct edge{
int Next,v;
}e[maxm];
void add_edge(int u,int v){
e[cnt].Next=Head[u];
e[cnt].v=v;
Head[u]=cnt++;
} int Index = ;
int dfn[maxn], low[maxn], root;
bool vis[maxn];
int exc,num;
void dfs(int cur, int father) {
if(cur==exc){ return;}
num++;
int child = ;
Index++;
dfn[cur] = Index;
low[cur] = Index;
for (int k = Head[cur]; k != -; k = e[k].Next) {
if(e[k].v==exc){ continue;}
if (dfn[e[k].v] == ) {
child++;
dfs(e[k].v, cur);
low[cur] = min(low[cur], low[e[k].v]);
if (cur != root && low[e[k].v] >= dfn[cur]) {
if(!vis[cur]){
vis[cur]=true;
}
}
if (cur == root && child == ) {
if(!vis[cur]){
vis[cur]=true;
}
}
} else if (e[k].v != father) {
low[cur] = min(low[cur], dfn[e[k].v]);
}
}
} int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin); int n,m;
int cases=;
while (scanf("%d%d",&n,&m)!=EOF&&(n||m)){
cases++;
exc=cnt=Index=;
memset(Head,-, sizeof(Head));
memset(dfn,,sizeof(dfn));
memset(vis,,sizeof(vis));
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
} int ans=;
for(int i=;i<=n;i++) {
memset(dfn, , sizeof(dfn));
memset(vis, , sizeof(vis));
Index=;
exc = i;
int d1,d2;
int tot = ;
dfn[exc]=-;
d1=d2=-;
for(int j=;j<=n;j++){
if(!dfn[j]&&j!=exc){
tot++;
root=j;
num=;
dfs(j,j);
if(d1==-)d1=num;
else d2=num;
}
}
if(tot==){//如果删除的点不是割点,那么和它组合的一定是割点(删除之后)
for(int j=;j<=n;j++){
ans+=vis[j];
}
}else if(tot==){//这个点是割点,而且把原图分为了两部分
if(d1==d2&&d1==){
ans+=;
}//如果两部分的点数都是1,那么对答案没有贡献
else if(d1==||d2==){ans+=n-;}//有一个是1,就不能删除那个独苗
else ans+=n-;//既然都不是1,那就可以随便删除
}else{
ans+=n-;//有三块,可以任意删除
}
}printf("Case %d: %d\n",cases,ans/); } return ;
}
HDU - 3671 Boonie and Clyde (图的割点)的更多相关文章
- 图的割点 | | jzoj【P1230】 | | gdoi | |备用交换机
写在前面:我真的不知道图的割点是什么.... 看见ftp图论专题里面有个dfnlow的一个文档,于是怀着好奇的心情打开了这个罪恶的word文档,,然后就开始漫长的P1230的征讨战.... 图的割点是 ...
- 图的割点 桥 双连通(byvoid)
[点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...
- Tarjan算法:求解图的割点与桥(割边)
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...
- Tarjan算法:求解无向连通图图的割点(关节点)与桥(割边)
1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point).一个没有关节点的 ...
- HDU - 4587 TWO NODES (图的割点)
Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expres ...
- HDU 1045 Fire Net(图匹配)
题目大意: 这个是以前做过的一道DFS题目,当时是完全暴力写的. 给你一个N代表是N*N的矩阵,矩阵内 ‘X’代表墙, ‘.’代表通道. 问这个矩阵内最多可以放几个碉堡, 碉堡不能在同一行或者同一列, ...
- HDU 4444 Walk (离散化建图+BFS+记忆化搜索) 绝对经典
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4444 题意:给你一些n个矩形,给你一个起点,一个终点,要你求从起点到终点最少需要转多少个弯 题解:因为 ...
- hdu 3061 hdu 3996 最大权闭合图 最后一斩
hdu 3061 Battle :一看就是明显的最大权闭合图了,水提......SB题也不说边数多少....因为开始时候数组开小了,WA....后来一气之下,开到100W,A了.. hdu3996. ...
- hdu 4738 Caocao's Bridges 图--桥的判断模板
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
随机推荐
- 封装好的MySQL.class.php类
封装好的MySQL.class.php类 作用:数据库操作类 <?php header('content-type:text/html;charset=utf-8'); class MySQLD ...
- Codeforces 276D
题目链接 这题真的体现了自己思维的不足,考虑问题只是考虑他的特殊性,却不能总结出它的一般性规律. 对于这题, 如果L == R , 那么结果为0. 否则, 我们只需要找到最高的某一位 (二进制数中的某 ...
- NPOI操作、导出Excel
//使用NPOI操作Excel private void ExcelNPOI(System.Data.DataTable dt, HttpContext context) { IWorkbook wo ...
- 2019.9.10附加题while练习
题目:企业发放的奖金根据利润提成.利润(I)低于或等于10万元时,奖金可提10%:利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可提成7.5%:20万到40万之 ...
- UI2CODE复杂背景无法识别?闲鱼工程师这样打造高准确率方案
引言: 复杂背景内容提取指的是从复杂的背景中提取出特定的内容,例如在图片中提取特定的文字,在图片中提取特定的叠加图层等等.这是一个业界难题,基于传统的图像处理的方法存在准确率和召回率的问题,没法解决语 ...
- sql.date
package com.sxt.utils.date1; import java.sql.Date; /* * sql.date:没有时,分,秒 */ public class TestDate2 { ...
- Python中进制转换函数的使用
Python中进制转换函数的使用 关于Python中几个进制转换的函数使用方法,做一个简单的使用方法的介绍,我们常用的进制转换函数常用的就是int()(其他进制转换到十进制).bin()(十进制转换到 ...
- 详解Python中内置的NotImplemented类型的用法
它是什么? ? 1 2 >>> type(NotImplemented) <type 'NotImplementedType'> NotImplemented 是Pyth ...
- 2019-2-2-VisualStudio-扩展开发-添加菜单
title author date CreateTime categories VisualStudio 扩展开发 添加菜单 lindexi 2019-02-02 15:35:18 +0800 201 ...
- HZOJ visit
对于前30%的数据,可以考虑dp,f[i][j][k]表示时间为i,在i,j位置的方案数,枚举转移即可.要注意的是可以走到矩阵外. 对于另外30%数据,考虑推一下式子,设向右走y步,左z,上s,下x. ...