Description

\(A\) 国共有 \(n\) 座城市,这些城市由 \(n-1\) 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 \(A\) 国。旅行者计划乘飞机降落在 \(x\) 号城市,沿着 \(x\) 号城市到 \(y\) 号城市之间那条唯一的路径游览,最终从 \(y\) 城市起飞离开 \(A\) 国。在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 \(xor\) 7 \(xor\) 11)。有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5 和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中可以保留的最大幸运值是多少。

Input

第一行包含 \(2\) 个正整数 \(n\) ,\(q\),分别表示城市的数量和旅行者数量。第二行包含 \(n\) 个非负整数,其中第 \(i\) 个整数 \(Gi\) 表示 \(i\) 号城市的幸运值。随后 \(n-1\) 行,每行包含两个正整数 \(x\) ,\(y\),表示 \(x\) 号城市和 \(y\) 号城市之间有一条道路相连。随后 \(q\) 行,每行包含两个正整数 \(x\) ,\(y\),表示这名旅行者的旅行计划是从 \(x\) 号城市到 \(y\) 号城市。

\(N \leq20000,Q \leq 200000,Gi \leq 2^60\)

Output

输出需要包含 \(q\) 行,每行包含 \(1\) 个非负整数,表示这名旅行者可以保留的最大幸运值。

Sample Input

4 2

11 5 7 9

1 2

1 3

1 4

2 3

1 4

Sample Output

14

11


想法

要求一堆数中的最大异或和要用线性基。

那么这道题我们就要把一条路径上的所有店的值扔到线性基里去求最大。

怎么扔进去呢?倍增 ,维护每个点网上跳 \(2^i\) 个点这条链上的线性基

查询的时候 \(lca\) 的时候合并一下线性基就可以了。

没有卡常,极其感动。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring> using namespace std; const int N = 20005;
typedef long long ll; ll lread(){
ll x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
}
int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
} int n;
ll G[N]; struct node{
int v;
node *nxt;
}pool[N*2],*h[N];
int cnt;
void addedge(int u,int v){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->nxt=h[u];h[u]=p;
q->v=u;q->nxt=h[v];h[v]=q;
} int f[N][16],dep[N];
ll g[N][16][65]; void ins(ll *A,ll x) {
for(int i=60;i>=0;i--)
if(x&(1ll<<i)){
if(!A[i]) { A[i]=x; return; }
x^=A[i];
}
}
void merge(ll *A,ll *B) { for(int i=60;i>=0;i--) if(B[i]) ins(A,B[i]); }
ll MAX(ll *A) {
ll ret=0;
for(int i=60;i>=0;i--) ret=max(ret,ret^A[i]);
return ret;
} void dfs(int u){
int v;
for(node *p=h[u];p;p=p->nxt)
if(!dep[v=p->v]){
dep[v]=dep[u]+1;
f[v][0]=u; ins(g[v][0],G[u]);
for(int j=1;j<16;j++){
f[v][j]=f[f[v][j-1]][j-1];
memcpy(g[v][j],g[v][j-1],sizeof(g[v][j]));
merge(g[v][j],g[f[v][j-1]][j-1]);
}
dfs(v);
}
}
ll lca(int x,int y){
ll c[65]; memset(c,0,sizeof(c));
ins(c,G[x]); ins(c,G[y]);
if(dep[x]<dep[y]) swap(x,y);
for(int i=15;i>=0;i--)
if(dep[f[x][i]]>=dep[y]) merge(c,g[x][i]),x=f[x][i];
if(x==y) return MAX(c);
for(int i=15;i>=0;i--)
if(f[x][i]!=f[y][i]){
merge(c,g[x][i]); x=f[x][i];
merge(c,g[y][i]); y=f[y][i];
}
merge(c,g[x][0]);
return MAX(c);
} int main()
{
int Q;
n=read(); Q=read();
for(int i=1;i<=n;i++) G[i]=lread();
for(int i=1;i<n;i++) addedge(read(),read()); dep[1]=1; dfs(1); while(Q--)
printf("%lld\n",lca(read(),read())); return 0;
}

[bzoj4568] [loj#2013] [Scoi2016] 幸运数字的更多相关文章

  1. [BZOJ4568][SCOI2016]幸运数字(倍增LCA,点分治+线性基)

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2131  Solved: 865[Submit][Statu ...

  2. 【BZOJ4568】[Scoi2016]幸运数字 倍增+线性基

    [BZOJ4568][Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念 ...

  3. [BZOJ4568][Scoi2016]幸运数字 倍增+线性基

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1791  Solved: 685[Submit][Statu ...

  4. bzoj4568: [Scoi2016]幸运数字(LCA+线性基)

    4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...

  5. BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]

    4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...

  6. [SCOI2016]幸运数字 树链剖分,线性基

    [SCOI2016]幸运数字 LG传送门 为了快乐,我们用树剖写这题. 强行树剖,线段树上每个结点维护一个线性基,每次查询暴力合并. 瞎分析一波复杂度:树剖两点之间\(\log n\)条重链,每条重链 ...

  7. bzoj 4568: [Scoi2016]幸运数字

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 848  Solved: 336[Submit][Status ...

  8. [洛谷P3292] [SCOI2016]幸运数字

    洛谷题目链接:[SCOI2016]幸运数字 题目描述 A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城 ...

  9. 【BZOJ 4568】 4568: [Scoi2016]幸运数字 (线性基+树链剖分+线段树)

    4568: [Scoi2016]幸运数字 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形 ...

随机推荐

  1. linux Do-it-yourself 探测

    探测也可以在驱动自身实现没有太大麻烦. 它是一个少有的驱动必须实现它自己的探测, 但是看它是如何工作的能够给出对这个过程的内部认识. 为此目的, short 模块进行 do- it-yourself ...

  2. vue-cli 初始化 -4058 error

    如上图 原因:安装初始化时没有管理员权限 解决:进入目录删除node_modules,进入命令提示符以管理员身份重新运行: npm install

  3. java的四种代码块

    用{}括起来的称为代码块: 普通代码块:类中方法的方法体 构造代码块:类中{}直接括起来的语句,每次创建对象都会被调用,先于构造函数执行 静态代码块:类中static{}括起来的语句,只执行一次,先于 ...

  4. 深度解读 - TDD(测试驱动开发)

    转自:http://www.jianshu.com/p/62f16cd4fef3 本文结构: 什么是 TDD 为什么要 TDD 怎么 TDD FAQ 学习路径 延伸阅读 什么是 TDD TDD 有广义 ...

  5. C# 匹配可空变量

    在 C# 7.0 的时候提供更好用的模式匹配方法,支持通过 is 直接转换对应的类,但是如果是尝试转换可空的对象,那么将会提示无法编译,或转换失败 在 C# 7.0 的 is 转换是十分好用的功能,例 ...

  6. 手把手教你基于koa2,mongoose实现增删改查

    初始化项目 npm init -y 先安装一波乱七八糟的依赖插件(需要具备一定的koa2知识,至于mongoDB自行百度安装教程),模板引擎我使用的是art-template(据说是性能最好的,而且是 ...

  7. dotnet 通过 HttpClient 下载文件同时报告进度的方法

    本文告诉大家一个简单的方法通过 HttpClient 下载文件,同时报告下载进度 通过 HttpClient 的 ContentLength 很多时候都可以拿到下载的内容的长度,通过 ReadAsyn ...

  8. Codeforces Round #524 (Div. 2) codeforces 1080A~1080F

    目录 codeforces1080A codeforces 1080B codeforces 1080C codeforces 1080D codeforces 1080E codeforces 10 ...

  9. apache WEB服务器安装(包括虚拟主机)

    一.apache下载编译安装 yum install apr apr-devel apr-util apr-util-devel gcc-c++ wget tar -y cd /usr/src wge ...

  10. linux 搭建jenkins

    一.什么是持续集成? (1)Continuous integration(CI) 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通常每个成员至少集成一次,也就意味着每天可能会发生多次集 ...