light oj 1045 - Digits of Factorial K进制下N!的位数
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input |
Output for Sample Input |
5 5 10 8 10 22 3 1000000 2 0 100 |
Case 1: 3 Case 2: 5 Case 3: 45 Case 4: 18488885 Case 5: 1 |
分析:换底公式log a b = log c b / log c a; 所以logk(fn) = log10(fn)/ log10k; logq0(fn) = log10(N) = log10(1 * 2 *...*n) = log10(1) + 1og10(2) .....+ 1og10(n)
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define N 1000009
using namespace std;
double a[N];
void init()
{
a[0] = log10(1);
for(int i = 1; i <= N; i++)
a[i] = a[i-1] + log10(i*1.0);
}
int main(void)
{
int T, cas;
int n, k;
init();
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
scanf("%d%d", &n, &k);
if(n == 0)
printf("Case %d: 1\n", cas);
else
{
double ans = ceil(a[n]/log10(k*1.0));
printf("Case %d: %d\n", cas, (int)ans);
}
}
light oj 1045 - Digits of Factorial K进制下N!的位数的更多相关文章
- n!在k进制下的后缀0
问n! 转化成k进制后的位数和尾数的0的个数.[UVA 10061 How many zeros and how many digits?] Given a decimal integer numbe ...
- 陕西师范大学第七届程序设计竞赛网络同步赛 F WWX的礼物【数学/k进制下x^n的位数/log】
链接:https://www.nowcoder.com/acm/contest/121/F来源:牛客网 题目描述 WWX的女朋友送给了他一个礼物,可是礼物却被一把K进制密码锁锁住了.在礼物盒上还有一张 ...
- bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式
题目大意 求n!在k进制下的位数 2≤N≤2^31, 2≤K≤200 分析 作为数学没学好的傻嗨,我们先回顾一下log函数 \(\log_a(b)=\frac 1 {log_b(a)}\) \(\lo ...
- 51 Nod 1116 K进制下的大数
1116 K进制下的大数 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 收藏 关注 有一个字符串S,记录了一个大数,但不知这个大数是多少进制的,只知道这个数 ...
- 求x!在k进制下后缀零的个数(洛谷月赛T1)
求x!在k进制下后缀和的个数 20分: 求十进制下的x!后缀和的个数 40分: 高精求阶乘,直接模拟过程 (我不管反正我不打,本蒟蒻最讨厌高精了) 60分 利用一个定理(网上有求x!在 ...
- [51nod1116]K进制下的大数
解题关键:$A\% (k - 1) = (A[0] + A[1]*k + A[2]*{k^2} + ...A[n]*{k^n})\% (k - 1) = (A[0] + A[1] + ...A[n]) ...
- 数位DP 求K进制下0~N的每个数每位上出现的数的总和
好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对 ...
- 51nod 1116 K进制下的大数
你万万想不到,Long Long 就能存下的数据 #include <iostream> #include <cstdio> #include <cstdlib> ...
- 51nod 1116 K进制下的大数 (暴力枚举)
题目链接 题意:中文题. 题解:暴力枚举. #include <iostream> #include <cstring> using namespace std; ; ; ch ...
随机推荐
- Nginx的一理解(2)
1.静态HTTP服务器 首先,Nginx是一个HTTP服务器,可以将服务器上的静态文件(如HTML.图片)通过HTTP协议展现给客户端. 配置:
- css 透明度
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...
- ORM补充文件
models.FileField(verbose_name='头像', upload_to='avatars/') 文件 content = models.TextField() 文本 models. ...
- Tomcat 9 与JDK 8 的安装与配置
Tomcat 9的安装与配置 解压压缩包,我的解压路径是:D:\Program Files\Java 注意:这里tomcat压缩包不能解压到C盘,否则会因为C盘文件夹访问权限授权问题,没法解决后面出现 ...
- 个人任务day6
今日计划: 学会将网页放到公用网络上,并生成快捷方式. 昨日成果:完成登录页面.
- 每日一技|巧用 Telnet 调试 Dubbo 服务
个人博客地址 studyidea.cn,点击查看更多原创文章 0x00. 前言 想象这样一个场景,线上某个服务突发异常,导致上游服务调用异常,数据处于中间状态.服务恢复之后,我们需要修复这笔数据至正常 ...
- vmware安装kvm虚拟机
1. 概述 本篇博客主要使用运行在win10专业版上的vmware workstation 15 pro虚拟化软件,安装centos7.7最小化系统,并在centos7上安装kvm虚拟机,实现快速创建 ...
- kettle安装部署基本操作及实操文档
一.kettle是什么? Kettle,简称ETL(Extract-Transform-Load的缩写,即数据抽取.转换.装载的过程),是一款国外开源的ETL工具,纯Java编写,可以在Window. ...
- 面试官:"谈谈分库分表吧?"
转自:学习Java的小姐姐 www.cnblogs.com/chenchen0618/p/11624480.html 1.什么是分库分表 从字面上简单理解,就是将原本存储在一个库的数据分块存储在多个库 ...
- 并发队列之DelayQueue
已经说了四个并发队列了,DelayQueue这是最后一个,这是一个无界阻塞延迟队列,底层基于前面说过的PriorityBlockingQueue实现的 ,队列中每个元素都有过期时间,当从队列获取元素时 ...