论文来自Mikolov等人的《Efficient Estimation of Word Representations in Vector Space》

论文地址: 66666

论文介绍了2个方法,原理不解释...

skim code and comment https://github.com/graykode/nlp-tutorial:

# -*- coding: utf-8 -*-
# @time : 2019/11/9 12:53 import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt dtype = torch.FloatTensor # 3 Words Sentence
sentences = [ "i like dog", "i like cat", "i like animal",
"dog cat animal", "apple cat dog like", "dog fish milk like",
"dog cat eyes like", "i like apple", "apple i hate",
"apple i movie book music like", "cat dog hate", "cat dog like"] word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)} # Word2Vec Parameter
batch_size = 20 # To show 2 dim embedding graph
embedding_size = 2 # To show 2 dim embedding graph
voc_size = len(word_list) # 产生 batch_size个,每个都是一个input和label, both are ont-hot vector
def random_batch(data, size):
random_inputs = []
random_labels = []
random_index = np.random.choice(range(len(data)), size, replace=False) for i in random_index:
random_inputs.append(np.eye(voc_size)[data[i][0]]) # target
random_labels.append(data[i][1]) # context word return random_inputs, random_labels # Make skip gram of one size window
skip_grams = []
# 从第2个word_sequence开始(index=1),预测index=0和index=2,也就是[index=1,index=0]和[index=1,index=2]的添加到skim_grams中
for i in range(1, len(word_sequence) - 1):
target = word_dict[word_sequence[i]]
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]] for w in context:
skip_grams.append([target, w]) # Model
class Word2Vec(nn.Module):
def __init__(self):
super(Word2Vec, self).__init__() # W and WT is not Traspose relationship
self.W = nn.Parameter(-2 * torch.rand(voc_size, embedding_size) + 1).type(dtype) # voc_size > embedding_size Weight
self.WT = nn.Parameter(-2 * torch.rand(embedding_size, voc_size) + 1).type(dtype) # embedding_size > voc_size Weight def forward(self, X):
# X : [batch_size, voc_size]
hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size]
output_layer = torch.matmul(hidden_layer, self.WT) # output_layer : [batch_size, voc_size]
return output_layer model = Word2Vec() criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # Training
for epoch in range(5000): input_batch, target_batch = random_batch(skip_grams, batch_size) input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch)) optimizer.zero_grad()
output = model(input_batch) # output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
if (epoch + 1)%1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) loss.backward()
optimizer.step() # because
# input_size is [batch_size,voc_size] , ( a word is one-hot voctor(lenght is voc_size) )
# W is [voc_size,emmedding_size]
# a word*W ,result is same as:
# [1,0,0]*[w1,w4
# w2,w5
# w3,w6]
# so one word embedding vector is [w1,w4]
# 即: W[i][0],W[i][1]
for i, label in enumerate(word_list):
W, WT = model.parameters()
x,y = float(W[i][0]), float(W[i][1])
plt.scatter(x, y)
plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

pytorch --- word2vec 实现 --《Efficient Estimation of Word Representations in Vector Space》的更多相关文章

  1. Efficient Estimation of Word Representations in Vector Space 论文笔记

    Mikolov T , Chen K , Corrado G , et al. Efficient Estimation of Word Representations in Vector Space ...

  2. 一天一经典Efficient Estimation of Word Representations in Vector Space

    摘要 本文提出了两种从大规模数据集中计算连续向量表示(Continuous Vector Representation)的计算模型架构.这些表示的有效性是通过词相似度任务(Word Similarit ...

  3. Efficient Estimation of Word Representations in Vector Space (2013)论文要点

    论文链接:https://arxiv.org/pdf/1301.3781.pdf 参考: A Neural Probabilistic Language Model (2003)论文要点  https ...

  4. 【Deep Learning学习笔记】Efficient Estimation of Word Representations in Vector Space_google2013

    标题:Efficient Estimation of Word Representations in Vector Space 作者:Tomas Mikolov 发表于:ICLR 2013 主要内容: ...

  5. 论文翻译——Deep contextualized word representations

    Abstract We introduce a new type of deep contextualized word representation that models both (1) com ...

  6. Word Representations 词向量

    常用的词向量方法word2vec. 一.Word2vec 1.参考资料: 1.1) 总览 https://zhuanlan.zhihu.com/p/26306795 1.2) 基础篇:  深度学习wo ...

  7. word2vec 理论与实践

    导读 本文简单的介绍了Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练模型(Skip-gram,CBOW),以 ...

  8. TensorFlow v2.0实现Word2Vec算法

    使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...

  9. 文本深度表示模型Word2Vec

    简介 Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向 ...

随机推荐

  1. 3maven常用命令和配置依赖

    依赖: 例:spring-context.jar 依赖 spring-aop.jar... A中的某些类 需要使用B中的某些类,则称为A依赖于B 在maven项目中,如果要使用 一个当时存在的Jar或 ...

  2. “土法炮制”之 OOM框架

    一.什么是OOM框架? OOM 的全拼是 Object-Object-Map,意思是对象与对象之间的映射,OOM框架要解决的问题就是对象与对象之间数据的自动映射. 举一个具体的例子:用过MVC模式开发 ...

  3. Spring学习记录2——简单了解Spring容器工作机制

    简单的了解Spring容器内部工作机制 Spring的AbstractApplicationContext是ApplicationContext的抽象实现类,该抽象类的refresh()方法定义了Sp ...

  4. 本地Git绑定Gitee仓库

    前言 Window的小伙伴如果还没在本地配好Git环境可以参考:https://www.cnblogs.com/poloyy/p/12185132.html 创建Gitee仓库 Gitee绑定本地Gi ...

  5. crontab里的特殊符号%导致命令不能执行

    有群里的小伙伴说crontab里的任务不执行,具体是这样的 * * * * /bin/date "+%Y-%m-%d %H:%M:%S" >>/data/tmp/tes ...

  6. .NetCore自定义WebAPI返回Json的格式大小写的三种方式

    .NetCore的Controller/WebAPI可以帮我们将返回结果自动转换为Json格式给前台,而且可以自由设定格式(大写.小写.首字母大写等),我总结了三种方法,对应三种灵活度,供大家参考 ( ...

  7. 【javaWeb】sendRedirect和forward原理及区别总结

    一.原理.  1. Forward        该图的交互过程如下: ① 浏览器访问Servlet1. ② Servlet1想让Servlet2对客户端的请求进行响应,于是调用forward()方法 ...

  8. C语言寒假大作战02

    2.2.1 寒假大作战 问题 回答 这个作业属于哪个课程 2019软件四班C语言寒假作业大作战 这个作业要求在哪里 作业要求 我在这个课程的目标是 用switch完成一个menu基本框架 这个作业在那 ...

  9. Day6-Python3基础-面向对象编程

    面向过程 VS 面向对象 编程范式 编程是 程序 员 用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程 , 一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大 ...

  10. 基于django的会议室预订系统

    会议室预订系统 一.目标及业务流程 期望效果: 业务流程: 用户注册 用户登录 预订会议室 退订会议室 选择日期:今日以及以后日期 二.表结构设计和生成 1.models.py(用户继承Abstrac ...