论文来自Mikolov等人的《Efficient Estimation of Word Representations in Vector Space》

论文地址: 66666

论文介绍了2个方法,原理不解释...

skim code and comment https://github.com/graykode/nlp-tutorial:

# -*- coding: utf-8 -*-
# @time : 2019/11/9 12:53 import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
import matplotlib.pyplot as plt dtype = torch.FloatTensor # 3 Words Sentence
sentences = [ "i like dog", "i like cat", "i like animal",
"dog cat animal", "apple cat dog like", "dog fish milk like",
"dog cat eyes like", "i like apple", "apple i hate",
"apple i movie book music like", "cat dog hate", "cat dog like"] word_sequence = " ".join(sentences).split()
word_list = " ".join(sentences).split()
word_list = list(set(word_list))
word_dict = {w: i for i, w in enumerate(word_list)} # Word2Vec Parameter
batch_size = 20 # To show 2 dim embedding graph
embedding_size = 2 # To show 2 dim embedding graph
voc_size = len(word_list) # 产生 batch_size个,每个都是一个input和label, both are ont-hot vector
def random_batch(data, size):
random_inputs = []
random_labels = []
random_index = np.random.choice(range(len(data)), size, replace=False) for i in random_index:
random_inputs.append(np.eye(voc_size)[data[i][0]]) # target
random_labels.append(data[i][1]) # context word return random_inputs, random_labels # Make skip gram of one size window
skip_grams = []
# 从第2个word_sequence开始(index=1),预测index=0和index=2,也就是[index=1,index=0]和[index=1,index=2]的添加到skim_grams中
for i in range(1, len(word_sequence) - 1):
target = word_dict[word_sequence[i]]
context = [word_dict[word_sequence[i - 1]], word_dict[word_sequence[i + 1]]] for w in context:
skip_grams.append([target, w]) # Model
class Word2Vec(nn.Module):
def __init__(self):
super(Word2Vec, self).__init__() # W and WT is not Traspose relationship
self.W = nn.Parameter(-2 * torch.rand(voc_size, embedding_size) + 1).type(dtype) # voc_size > embedding_size Weight
self.WT = nn.Parameter(-2 * torch.rand(embedding_size, voc_size) + 1).type(dtype) # embedding_size > voc_size Weight def forward(self, X):
# X : [batch_size, voc_size]
hidden_layer = torch.matmul(X, self.W) # hidden_layer : [batch_size, embedding_size]
output_layer = torch.matmul(hidden_layer, self.WT) # output_layer : [batch_size, voc_size]
return output_layer model = Word2Vec() criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) # Training
for epoch in range(5000): input_batch, target_batch = random_batch(skip_grams, batch_size) input_batch = Variable(torch.Tensor(input_batch))
target_batch = Variable(torch.LongTensor(target_batch)) optimizer.zero_grad()
output = model(input_batch) # output : [batch_size, voc_size], target_batch : [batch_size] (LongTensor, not one-hot)
loss = criterion(output, target_batch)
if (epoch + 1)%1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss)) loss.backward()
optimizer.step() # because
# input_size is [batch_size,voc_size] , ( a word is one-hot voctor(lenght is voc_size) )
# W is [voc_size,emmedding_size]
# a word*W ,result is same as:
# [1,0,0]*[w1,w4
# w2,w5
# w3,w6]
# so one word embedding vector is [w1,w4]
# 即: W[i][0],W[i][1]
for i, label in enumerate(word_list):
W, WT = model.parameters()
x,y = float(W[i][0]), float(W[i][1])
plt.scatter(x, y)
plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

pytorch --- word2vec 实现 --《Efficient Estimation of Word Representations in Vector Space》的更多相关文章

  1. Efficient Estimation of Word Representations in Vector Space 论文笔记

    Mikolov T , Chen K , Corrado G , et al. Efficient Estimation of Word Representations in Vector Space ...

  2. 一天一经典Efficient Estimation of Word Representations in Vector Space

    摘要 本文提出了两种从大规模数据集中计算连续向量表示(Continuous Vector Representation)的计算模型架构.这些表示的有效性是通过词相似度任务(Word Similarit ...

  3. Efficient Estimation of Word Representations in Vector Space (2013)论文要点

    论文链接:https://arxiv.org/pdf/1301.3781.pdf 参考: A Neural Probabilistic Language Model (2003)论文要点  https ...

  4. 【Deep Learning学习笔记】Efficient Estimation of Word Representations in Vector Space_google2013

    标题:Efficient Estimation of Word Representations in Vector Space 作者:Tomas Mikolov 发表于:ICLR 2013 主要内容: ...

  5. 论文翻译——Deep contextualized word representations

    Abstract We introduce a new type of deep contextualized word representation that models both (1) com ...

  6. Word Representations 词向量

    常用的词向量方法word2vec. 一.Word2vec 1.参考资料: 1.1) 总览 https://zhuanlan.zhihu.com/p/26306795 1.2) 基础篇:  深度学习wo ...

  7. word2vec 理论与实践

    导读 本文简单的介绍了Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练模型(Skip-gram,CBOW),以 ...

  8. TensorFlow v2.0实现Word2Vec算法

    使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...

  9. 文本深度表示模型Word2Vec

    简介 Word2vec 是 Google 在 2013 年年中开源的一款将词表征为实数值向量的高效工具, 其利用深度学习的思想,可以通过训练,把对文本内容的处理简化为 K 维向量空间中的向量运算,而向 ...

随机推荐

  1. C#实现DataTable转TXT文件

    实现DataTable转TXT文件代码如下: public ExecutionResult DataTableToTxt(DataTable vContent, string vOutputFileP ...

  2. restapi-sql

    身份验证,确定该成员是交过费的机构的成员,包含(用户名)和(密码) 各个表中的属性,有关timetemp等特殊类型,LocalDate等日期等具体格式. 引入了传输过程的不同的数据格式导致的两个错误, ...

  3. Educational Codeforces Round 80 (Rated for Div. 2)

    A. Deadline 题目链接:https://codeforces.com/contest/1288/problem/A 题意: 给你一个 N 和 D,问是否存在一个 X , 使得 $x+\lce ...

  4. 《企业IT架构转型之道:阿里巴巴中台战略思想与架构实战》-总结

      一.什么是业务中台 概念来自于阿里,介于前台和后台(此后台指的是云计算.数据库.消息队列.缓存等基础服务) 采用共享式架构设计解决以往烟囱式架构设计的资源浪费.重复造轮.试错成本高的问题 阿里的中 ...

  5. CAS是什么

    CAS是什么? 比较并交换 例子1: public class ABADemo1 { public static void main(String[] args) { AtomicInteger at ...

  6. git查看远程仓库和本地的区别

    git diff 你可以用 git diff 来比较项目中任意两个版本的差异. $ git diff master..test 上面这条命令只显示两个分支间的差异,如果你想找出 master , te ...

  7. 隐隐约约 听 RazorEngine 在 那里 据说 生成代码 很 美。

    这只是 一个开始 ....

  8. 前端基础JavaScript

    JavaScript概述 ECMAScript和JavaScript的关系 1996年11月,JavaScript的创造者--Netscape公司,决定将JavaScript提交给国际标准化组织ECM ...

  9. php--->php打印格式化

    php打印格式化 当我们PHP调试的时候,用var_dump 或 print_r打印json数据或array数组时,html页面没有换行显示,看到的内容一大堆,不好定位.输出前添加html的pre标签 ...

  10. [GPU高性能编程CUDA实战].(桑德斯).聂雪军等.扫描版-百度云分享

    链接:https://pan.baidu.com/s/1NkkDiyRgmfmhm9d2g_GBKQ 提取码:3usj