Python for Data Analysis 学习心得(三) - 文件读写和数据预处理
一、Pandas文件读写
pandas很核心的一个功能就是数据读取、导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选、预处理。在读取数据时的选项有超过50个参数,可见pandas对于各式各样的数据都能有非常好的应对能力。下面先介绍基本的读取指令。

前面两个read_csv和read_table是用的比较多的两种。下面为实际操作的范例。


当然大部分的时候数据导入不会这么顺利,因为源数据里可能会有多种的分离方式,里面还会夹杂一些脏数据,所以pandas附上了一些选项来帮助导入的数据可以更整洁,像是上面就是用了sep选项将逗号“,”设定为分隔符号。pandas还可以自定索引、列名称等,这边就不逐个介绍,因为我在用的时候也不常去用这些功能,真的需要再查就可以了。下面列了一些比较常用的导入选项。也是需要的时候再查看就行。

当文件数据量很大的时候,我们有时候不想每次都将所有的数据显示出来,可以用下面的指令只显示前面5个和后面5个。

或是在读取的时候只读取前面几个,节省导入时间

Pandas文件导出
除了读取数据,pandas也可以将整理好的数据导出,指令为 to_csv

本书还提到了几种格式的数据导入导出,例如JSON、HTML、HDF5、EXCEL、SQL,我个人觉得看看就好,知道可以用pandas导入,等要用的时候再细看就好。
二、数据清洗
Pandas另外一个强大的功能就是对数据进行清洗和准备分析数据。在传统数据分析上面这个部分往往是最消耗时间的,因为许多行业的原始数据多多少少都会有些脏数据、缺失数据,如果没及时发现会影响整个分析的结果,而pandas提供的数据清洗工具都是由实际需求和问题转化而来的,基本上可以因应大部分数据清洗、准备遇到的问题。
1、缺失值
当表中数据缺失时,会用NaN来表示,对于缺失数据的操作,如下表所示,可以使用isnull来查是否有缺失,fillna将缺失值填入指定数据,dropna会丢弃含有NaN的行。

对于缺失数据的处理方式一般有三种,1、抛弃行 2、抛弃列 3、填充。dropna就是抛弃行的方式,但大部分的情况下,我们会希望我们的数据是完整、数量多的,所以填充是比较常见的处理方式,下面的指令就是将所有的缺失数据以“0”表示,取代NaN

也可以对每一列填上不同的填充数字,如下图,将1的列填上0.5,2的列填上0

另外一个常用的就是填入平均数,因为对于某些数据,例如商品价格,如果填入0可能对分析结果会有比较大的影像,而填入平均数则可以将缺失数据的影响降低。

2、重复数据
跟缺失数据一样,重复数据的处理指令也是有查看重复数据duplicated(),丢弃重复数据drop_duplicates(),也是有许多选项可以设定的。
3、数据映射
如果想要将两个表的数据合并,首先要先找到对应值,然后用map的方法join过去,下面范例由于其中一个表的对应值混有大写,所以要先对对应值进行处理(小写化),再投映过去,不然电脑会认为两边的对应值不同,造成部分数据投映不过去。当然,也可以投映过去后发现是哪些数据没有弄到,再查看原因解决也行。


4、数据替换
有些表会用其他元素取代NaN代表缺失数据,但这些预设的填充值可能会影响分析结果,所以需要先把这些数据替换成其他的数据,可以使用replace,下面就是将原本-999的数替换成NaN。

或是可以用字典的方式进行替换,下图是将-999替换为NaN,-1000替换成0

也可以对行列名称进行替换,这边用rename

5、排序和采样
在训练机器的时候,我们不希望将所有的数据都用来做训练,所以必须要做采样,代码为下,n为采样数。

但是随机采样有可能采集到的数比较偏,不能代表整体,对此,我们必须先做分层,并在每层按比例采取样本,训练出的结果会比较符合群体。pandas提供了cut这个功能来对样本进行分层,分层最重要的是以哪个维度作为分层的依据,下面的代码依照年龄作为分层的依据。

6、检测和过滤异常
用describe()可以将数据做简单的统计展示,如下

然后可以输入一些条件指令来检查是否有符合条件的数据,如下图是检查是否有绝对值大于3的数

Python for Data Analysis 学习心得(三) - 文件读写和数据预处理的更多相关文章
- Python for Data Analysis 学习心得(一) - numpy介绍
一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的 ...
- Python for Data Analysis 学习心得(二) - pandas介绍
一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Seri ...
- Python for Data Analysis 学习心得(四) - 数据清洗、接合
一.文字处理 之前在练习爬虫时,常常爬了一堆乱七八糟的字符下来,当时就有找网络上一些清洗数据的方式,这边pandas也有提供一些,可以参考使用看看.下面为两个比较常见的指令,往往会搭配使用. spli ...
- 数据分析---《Python for Data Analysis》学习笔记【03】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【02】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【04】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 数据分析---《Python for Data Analysis》学习笔记【01】
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...
- 学习笔记之Python for Data Analysis
Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...
- 《python for data analysis》第五章,pandas的基本使用
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...
随机推荐
- java文件操作 之 创建文件夹路径和新文件
一:问题 (1)java 的如果文件夹路径不存在,先创建: (2)如果文件名 的文件不存在,先创建再读写;存在的话直接追加写,关键字true表示追加 (3)File myPath = new File ...
- Laravel引入第三方库的方法
https://blog.csdn.net/will5451/article/details/52472695 1.首先在app目录下创建一个新的文件夹,命名libs(可自定义) 2.(可选)考虑到后 ...
- 【BestCoder Round #93 1004】MG loves set
[题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=6022 [题意] 让你求一个集合的子集数目; 这个子集有要求; 即: 它所有元素的平方的和小于它所有 ...
- phpStudy中升级MySQL版本到5.7.17的方法步骤
http://www.jb51.net/article/120263.htm 前言 今天在工作发现一个错误,在往本地导数据表的时候老是报错: ? 1 [Err] 1294 - Invalid ON U ...
- ERROR 1366 (HY000): Incorrect string value: '\xD5\xC5\xC8\xFD' for column 'name' at row 1
ERROR 1366 (HY000): Incorrect string value: '\xD5\xC5\xC8\xFD' for column 'name' at row 1 数据库字符集问 ...
- Codeforces Round #194 (Div.1 + Div. 2)
A. Candy Bags 总糖果数\(\frac{n^2(n^2+1)}{2}\),所以每人的数量为\(\frac{n}{2}(n^2+1)\) \(n\)是偶数. B. Eight Point S ...
- HttpMessageNotWritableException: Could not write JSON: Infinite recursion (StackOverflowError); nested exception is com.fasterxml.jackson.databind.JsonMappingException: Infinite
org.springframework.http.converter.HttpMessageNotWritableException: Could not write JSON: Infinite r ...
- 2018-8-10-C#-代码占用的空间
title author date CreateTime categories C# 代码占用的空间 lindexi 2018-08-10 19:16:52 +0800 2018-2-13 17:23 ...
- element-ui后台管理系统表单resetFields功能实现
项目中有‘新增’和‘编辑’弹出dialog功能,并且为同一个dialog. html代码: 新增时,这样的样式 编辑时,这样的样式 所以在编辑完关闭dialog后,需要清空表单,一开始简单的使用了el ...
- H3C 配置路由器作为FTP服务器端