bert 预训练模型路径
google的bert预训练模型:
BERT-Large, Uncased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Large, Cased (Whole Word Masking)
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Uncased
: 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Large, Uncased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Cased
: 12-layer, 768-hidden, 12-heads , 110M parametersBERT-Large, Cased
: 24-layer, 1024-hidden, 16-heads, 340M parametersBERT-Base, Multilingual Cased (New, recommended)
: 104 languages, 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Base, Multilingual Uncased (Orig, not recommended)
(Not recommended, useMultilingual Cased
instead): 102 languages, 12-layer, 768-hidden, 12-heads, 110M parametersBERT-Base, Chinese
: Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M parameters
pytorch的bert预训练模型(pretrained_model_name_or_path):
PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt",
}
PRETRAINED_MODEL_ARCHIVE_MAP = {
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
bert 预训练模型路径的更多相关文章
- 使用BERT预训练模型+微调进行文本分类
本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- BERT预训练模型的演进过程!(附代码)
1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Tr ...
- Pytorch——BERT 预训练模型及文本分类
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文 ...
- NLP与深度学习(五)BERT预训练模型
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional En ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 基于BERT预训练的中文命名实体识别TensorFlow实现
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- BERT的通俗理解 预训练模型 微调
1.预训练模型 BERT是一个预训练的模型,那么什么是预训练呢?举例子进行简单的介绍 假设已有A训练集,先用A对网络进行预训练,在A任务上学会网络参数,然后保存以备后用,当来一个新 ...
随机推荐
- Mysql图解安装向导
注:本次安装为解压缩版: 1.设置Mysql环境变量: MYSQL_HOME: D:\Java\MySql\mysql-5.7.9-winx64 PATH: %MYSQL_HOME%\bin; 2.安 ...
- UMP系统功能 分库分表
- css3 html5 手机设备 列表的弹回和加速移动
<style type="text/css"> * { margin: 0; padding: 0; } .min { width: 350px; height: 40 ...
- centos6 php5.4 升級到php 5.6
因Centos6中的PHP版本有点底,需要升级PHP版本 [vagrant@localhost ~]$ php -v PHP 5.4.45 (cli) (built: Sep 30 2015 15:0 ...
- Python3基础笔记_字典
# Python3 字典 dict = {'} # 1.访问字典里的值 ,字典中没有key会报错 # 2.修改字典 print("修改之前:", dict['Beth']) dic ...
- vue的无缝滚动插件vue-seamless-scroll的使用
https://chenxuan0000.github.io/component-document/index_prod.html#/component/seamless-others 在vue环境下 ...
- some方法过滤
// 已经存在该tab时跳过 this.tabs.some(item => item.title === option.title) || this.tabs.push(option)
- 安装 adb centos 7
打开 https://centos.pkgs.org/7/epel-x86_64/android-tools-20130123git98d0789-5.el7.x86_64.rpm.html 下载 r ...
- PHP面向对象访问修饰符的基本了解
l 文档的介绍: 对属性或方法的访问控制,是通过在前面添加关键字 public(公有),protected(受保护)或 private(私有)来实现的.被定义为公有的类成员可以在任何地方被访问.被定义 ...
- <每日一题>题目8:文件备份V1.0
import os #备份文件的路径 file_address = input("输入需要备份文件所在的路径:") os.chdir(file_address) #备份文件命名 f ...