了解k8s中的Liveness和Readiness

Liveness: 
表明是否容器正在运行。如果liveness探测为fail,则kubelet会kill掉容器,并且会触发restart设置的策略。默认不设置的情况下,该状态为success.
Readiness: 
表明容器是否可以接受服务请求。如果readiness探测失败,则endpoints控制器会从endpoints中摘除该Pod IP。在初始化延迟探测时间之前,默认是Failure。如果没有设置readiness探测,该状态为success。

代码分析

基于Kubernetes 1.11.0

1.启动探测

在kubelet启动是时候会启动健康检查的探测:
kubelet.go中Run方法

...
kl.probeManager.Start() //启动探测服务
...

2.看一下probeManager都做了哪些事情

prober_manager.go中我们看一下这段代码:

// Manager manages pod probing. It creates a probe "worker" for every container that specifies a
// probe (AddPod). The worker periodically probes its assigned container and caches the results. The
// manager use the cached probe results to set the appropriate Ready state in the PodStatus when
// requested (UpdatePodStatus). Updating probe parameters is not currently supported.
// TODO: Move liveness probing out of the runtime, to here.
type Manager interface {
// AddPod creates new probe workers for every container probe. This should be called for every
// pod created.
AddPod(pod *v1.Pod) // RemovePod handles cleaning up the removed pod state, including terminating probe workers and
// deleting cached results.
RemovePod(pod *v1.Pod) // CleanupPods handles cleaning up pods which should no longer be running.
// It takes a list of "active pods" which should not be cleaned up.
CleanupPods(activePods []*v1.Pod) // UpdatePodStatus modifies the given PodStatus with the appropriate Ready state for each
// container based on container running status, cached probe results and worker states.
UpdatePodStatus(types.UID, *v1.PodStatus) // Start starts the Manager sync loops.
Start()
}

这是一个Manager的接口声明,该Manager负载pod的探测。当执行AddPod时,会为Pod中每一个容器创建一个执行探测任务的worker, 该worker会对所分配的容器进行周期性的探测,并把探测结果缓存。当UpdatePodStatus方法执行时,该manager会使用探测的缓存结果设置PodStatus为近似Ready的状态:

3.一“探”究竟

先看一下探测的struct

type Probe struct {
// The action taken to determine the health of a container
Handler `json:",inline" protobuf:"bytes,1,opt,name=handler"`
// Number of seconds after the container has started before liveness probes are initiated.
// More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
// +optional
InitialDelaySeconds int32 `json:"initialDelaySeconds,omitempty" protobuf:"varint,2,opt,name=initialDelaySeconds"`
// Number of seconds after which the probe times out.
// Defaults to 1 second. Minimum value is 1.
// More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
// +optional
TimeoutSeconds int32 `json:"timeoutSeconds,omitempty" protobuf:"varint,3,opt,name=timeoutSeconds"`
// How often (in seconds) to perform the probe.
// Default to 10 seconds. Minimum value is 1.
// +optional
PeriodSeconds int32 `json:"periodSeconds,omitempty" protobuf:"varint,4,opt,name=periodSeconds"`
// Minimum consecutive successes for the probe to be considered successful after having failed.
// Defaults to 1. Must be 1 for liveness. Minimum value is 1.
// +optional
SuccessThreshold int32 `json:"successThreshold,omitempty" protobuf:"varint,5,opt,name=successThreshold"`
// Minimum consecutive failures for the probe to be considered failed after having succeeded.
// Defaults to 3. Minimum value is 1.
// +optional
FailureThreshold int32 `json:"failureThreshold,omitempty" protobuf:"varint,6,opt,name=failureThreshold"`
}

initialDelaySeconds: 表示容器启动之后延迟多久进行liveness探测
timeoutSeconds:每次执行探测的超时时间
periodSeconds:探测的周期时间
successThreshold:最少连续几次探测成功的次数,满足该次数则认为success。
failureThreshold:最少连续几次探测失败的次数,满足该次数则认为fail

Handler:
不论是liveness还是readiness都支持3种类型的探测方式:执行命令、http方式以及tcp方式。

// Handler defines a specific action that should be taken
// TODO: pass structured data to these actions, and document that data here.
type Handler struct {
// One and only one of the following should be specified.
// Exec specifies the action to take.
// +optional
Exec *ExecAction `json:"exec,omitempty" protobuf:"bytes,1,opt,name=exec"`
// HTTPGet specifies the http request to perform.
// +optional
HTTPGet *HTTPGetAction `json:"httpGet,omitempty" protobuf:"bytes,2,opt,name=httpGet"`
// TCPSocket specifies an action involving a TCP port.
// TCP hooks not yet supported
// TODO: implement a realistic TCP lifecycle hook
// +optional
TCPSocket *TCPSocketAction `json:"tcpSocket,omitempty" protobuf:"bytes,3,opt,name=tcpSocket"`
}

接下来看一下prober.go中的runProbe方法。

func (pb *prober) runProbe(probeType probeType, p *v1.Probe, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID) (probe.Result, string, error) {
timeout := time.Duration(p.TimeoutSeconds) * time.Second
if p.Exec != nil {
glog.V(4).Infof("Exec-Probe Pod: %v, Container: %v, Command: %v", pod, container, p.Exec.Command)
command := kubecontainer.ExpandContainerCommandOnlyStatic(p.Exec.Command, container.Env)
return pb.exec.Probe(pb.newExecInContainer(container, containerID, command, timeout))
}
if p.HTTPGet != nil {
scheme := strings.ToLower(string(p.HTTPGet.Scheme))
host := p.HTTPGet.Host
if host == "" {
host = status.PodIP
}
port, err := extractPort(p.HTTPGet.Port, container)
if err != nil {
return probe.Unknown, "", err
}
path := p.HTTPGet.Path
glog.V(4).Infof("HTTP-Probe Host: %v://%v, Port: %v, Path: %v", scheme, host, port, path)
url := formatURL(scheme, host, port, path)
headers := buildHeader(p.HTTPGet.HTTPHeaders)
glog.V(4).Infof("HTTP-Probe Headers: %v", headers)
if probeType == liveness {
return pb.livenessHttp.Probe(url, headers, timeout)
} else { // readiness
return pb.readinessHttp.Probe(url, headers, timeout)
}
}
if p.TCPSocket != nil {
port, err := extractPort(p.TCPSocket.Port, container)
if err != nil {
return probe.Unknown, "", err
}
host := p.TCPSocket.Host
if host == "" {
host = status.PodIP
}
glog.V(4).Infof("TCP-Probe Host: %v, Port: %v, Timeout: %v", host, port, timeout)
return pb.tcp.Probe(host, port, timeout)
}
glog.Warningf("Failed to find probe builder for container: %v", container)
return probe.Unknown, "", fmt.Errorf("Missing probe handler for %s:%s", format.Pod(pod), container.Name)
}

1.执行命令方式
通过newExecInContainer方法调用CRI执行命令:

// ExecAction describes a "run in container" action.
type ExecAction struct {
// Command is the command line to execute inside the container, the working directory for the
// command is root ('/') in the container's filesystem. The command is simply exec'd, it is
// not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use
// a shell, you need to explicitly call out to that shell.
// Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
// +optional
Command []string `json:"command,omitempty" protobuf:"bytes,1,rep,name=command"`
}

2.http GET方式
通过http GET方式进行探测。
Port:表示访问容器的端口
Host:表示访问的主机,默认是Pod IP

// HTTPGetAction describes an action based on HTTP Get requests.
type HTTPGetAction struct {
// Path to access on the HTTP server.
// +optional
Path string `json:"path,omitempty" protobuf:"bytes,1,opt,name=path"`
// Name or number of the port to access on the container.
// Number must be in the range 1 to 65535.
// Name must be an IANA_SVC_NAME.
Port intstr.IntOrString `json:"port" protobuf:"bytes,2,opt,name=port"`
// Host name to connect to, defaults to the pod IP. You probably want to set
// "Host" in httpHeaders instead.
// +optional
Host string `json:"host,omitempty" protobuf:"bytes,3,opt,name=host"`
// Scheme to use for connecting to the host.
// Defaults to HTTP.
// +optional
Scheme URIScheme `json:"scheme,omitempty" protobuf:"bytes,4,opt,name=scheme,casttype=URIScheme"`
// Custom headers to set in the request. HTTP allows repeated headers.
// +optional
HTTPHeaders []HTTPHeader `json:"httpHeaders,omitempty" protobuf:"bytes,5,rep,name=httpHeaders"`
}

3.tcp方式
通过设置主机和端口即可进行tcp方式访问

// TCPSocketAction describes an action based on opening a socket
type TCPSocketAction struct {
// Number or name of the port to access on the container.
// Number must be in the range 1 to 65535.
// Name must be an IANA_SVC_NAME.
Port intstr.IntOrString `json:"port" protobuf:"bytes,1,opt,name=port"`
// Optional: Host name to connect to, defaults to the pod IP.
// +optional
Host string `json:"host,omitempty" protobuf:"bytes,2,opt,name=host"`
}

此处脑洞一下:如果三种探测方式都设置了,会如何执行处理?

思考

通过k8s部署生产环境应用时,建议设置上liveness和readiness, 这也是保障服务稳定性的最佳实践。
另外由于Pod Ready不能保证实际的业务应用Ready可用,在最新的 1.14 版本中新增了一个Pod Readiness Gates 特性 。通过这个特性,可以保证应用Ready后进而设置Pod Ready。

结尾

针对上面的脑洞:如果三种探测方式都设置了,会如何执行处理?
答:我们如果在Pod中设置多个探测方式,提交配置的时候会直接报错:

此处继续源代码:在validation.go中validateHandler中进行了限制(也为上面Handler struct提到的"One and only one of the following should be specified."提供了事实依据)


func validateHandler(handler *core.Handler, fldPath *field.Path) field.ErrorList {
numHandlers := 0
allErrors := field.ErrorList{}
if handler.Exec != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("exec"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateExecAction(handler.Exec, fldPath.Child("exec"))...)
}
}
if handler.HTTPGet != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("httpGet"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateHTTPGetAction(handler.HTTPGet, fldPath.Child("httpGet"))...)
}
}
if handler.TCPSocket != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("tcpSocket"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateTCPSocketAction(handler.TCPSocket, fldPath.Child("tcpSocket"))...)
}
}
if numHandlers == 0 {
allErrors = append(allErrors, field.Required(fldPath, "must specify a handler type"))
}
return allErrors
}

本文作者:元毅

原文链接

本文为云栖社区原创内容,未经允许不得转载。

K8s中Pod健康检查源代码分析的更多相关文章

  1. Kubernetes中Pod健康检查

    目录 1.何为健康检查 2.探针分类 2.1.LivenessProbe探针(存活性探测) 2.2.ReadinessProbe探针(就绪型探测) 3.探针实现方法 3.1.Container Exe ...

  2. Knative Serving 健康检查机制分析

    作者|  阿里云智能事业群技术专家牛秋霖(冬岛) 导读:从头开发一个Serverless引擎并不是一件容易的事情,今天咱们就从Knative的健康检查说起.通过健康检查这一个点来看看Serverles ...

  3. kubernetes之pod健康检查

    目录 kubernetes之pod健康检查 1.概述和分类 2.LivenessProbe探针(存活性探测) 3.ReadinessProbe探针(就绪型探测) 4.探针的实现方式 4.1.ExecA ...

  4. 如何从Serilog请求日志记录中排除健康检查终结点

    这是在ASP.NET Core 3.X中使用Serilog.AspNetCore系列文章的第四篇文章:. 第1部分-使用Serilog RequestLogging减少日志详细程度 第2部分-使用Se ...

  5. Java中arraylist和linkedlist源代码分析与性能比較

    Java中arraylist和linkedlist源代码分析与性能比較 1,简单介绍 在java开发中比較经常使用的数据结构是arraylist和linkedlist,本文主要从源代码角度分析arra ...

  6. 在.NET Core 中实现健康检查

    .NET Core中提供了开箱即用的运行状况检查,首先,我将在.NET Core API应用程序中执行运行状况检查,接下来,我们将使用DbContext集成SQL Server或数据库的运行状况检查, ...

  7. 如何在 ASP.Net Core 中实现 健康检查

    健康检查 常用于判断一个应用程序能否对 request 请求进行响应,ASP.Net Core 2.2 中引入了 健康检查 中间件用于报告应用程序的健康状态. ASP.Net Core 中的 健康检查 ...

  8. k8s 中 Pod 的控制器

    k8s 中 Pod 的控制器 前言 Replication Controller ReplicaSet Deployment 更新 Deployment 回滚 deployment StatefulS ...

  9. pod健康检查(liveness probe存活探针&&readiness probe 可读性探针)

    在Kubernetes集群当中,我们可以通过配置liveness probe(存活探针)和readiness probe(可读性探针)来影响容器的生存周期.参考文档:https://kubernete ...

随机推荐

  1. HTML 页面间传值(包含中文)

    A页面——>B页面 A页面 $('.edit-bottom').click(function () { var word1=$('#word').val();//需要传到B页面的值 var ur ...

  2. python基础--反射、元类、单例设计模式

    反射:reflect,反射指的是一个对象应该具备可以检测.修改.增加自身属性的能力,反射就是通过字符串操作属性 hasattr(对象,带查询的属性名称) 判断某个对象中是否存在某个属性 getattr ...

  3. oracle-视图-索引-序列

    Oracle提高查询性能 一 视图 视图是一个虚拟表,就是对select查询的结果取个名字.其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据.但是,视图并不在数据库中以存储的数据值 ...

  4. <a>标签操作

    1.点击后onclick事件失效,变灰,不可用 onclick(this); //事件传递this对象 function viewMm(obj) { $(obj).removeAttr("o ...

  5. HR招聘_(十)_招聘方法论(供应商管理)

    招聘和供应商长期合作,所以供应商管理也至关重要.供应商一般分为猎头,渠道,外包三类. 猎头 高端职位,高难度职位,急需职位和量大职位会和猎头公司合作共同完成招聘任务,猎头公司一般会有两种服务,猎头和R ...

  6. 客户端用javascript填充Dropdownlist,服务器端获取不到Dropdownlist的值

    今天遇到一个奇怪的问题,某一页面需要使用三级级联下拉列表框.为提高用户体验,采用jQuery的cascadingDropDown插件调用后台Web Services来实现ajax填充. 填充没有任何问 ...

  7. OpenLayers添加地图标记

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head ...

  8. python 类属性、静态方法与类方法

    1. 类属性 1.1 定义 在类中方法外通过属性名 = 属性值定义的属性 访问方式: 类名.属性名 对象名.属性名 class Student: cls_id = 102 stu = Student( ...

  9. temp for @青

    4层方法 IBaseController  BaseControllerImpl IBaseService BaseServiceImpl  IBaseComponent   IBaseCompone ...

  10. Oracle企业管理框架

    oracle管理服务器 是一个基于java的web构件,该构件是dba用来监视和控制oracle企业框架内各个受管理目标的实际界面 oracle储存库 已收集到并与受管理目标有关的配置和监视信息被存储 ...