详解 CUDA By Example 中的 Julia Set 绘制GPU优化
笔者测试环境VS2019。
基本介绍
原书作者引入Julia Sets意在使用GPU加速图形的绘制。Julia Set 是指满足下式迭代收敛的复数集合
\]
环境配置
跑这个例子的主要困难应该在于配置环境。这个程序依赖于openGL中的glut库。由于VS2019的整个软件架构发生了很大变化,一些链接库和头文件的位置都发生了改变,因此一些文章中的配置方法失效了。
首先我们需要获取glut库的头文件以及动态链接库。
点击这里cg-toolkit获取。安装成功之后,找到C:\Program Files (x86)\NVIDIA Corporation\Cg。注意勾选安装选项的x64相关应用。
将其中的lib文件夹中的_glut32.lib_复制到C:\Program Files (x86)\Windows Kits\10\Lib\10.0.18362.0\ucrt\x86
将其中的lib.x64文件夹中的glut32.lib复制到C:\Program Files (x86)\Windows Kits\10\Lib\10.0.18362.0\ucrt\x64并且重命名其为glut64.lib
笔者运行的是64位系统,就将bin.x64中的_glut32.dll_复制到C:\Windows\System32下
在这里下载头文件。下载完成之后,将头文件拷贝到C:\Program Files (x86)\Windows Kits\10\Include\10.0.18362.0\ucrt。并建立文件夹GL把它们包括起来。
提示,核心是找到C:\Program Files (x86)\Windows Kits\10,不要在Microsoft Visual Studio文件夹里浪费时间。
后面的10.0.18362.0根据版本不同可能不一致,具体问题具体分析
这个代码还需要一些别的头文件。如gl_helper.h, book.h, cpu_bitmap.h 等 在这里下载后复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include
主要代码
CPU Julia Set
RGBA模式中,每一个像素会保存以下数据:R值(红色分量)、G值(绿色分量)、B值(蓝色分量)和A值(alpha分量)。其中红、绿、蓝三种颜色相组合,就可以得到我们所需要的各种颜色,而alpha不直接影响颜色,它的含义是透明度。1
下面是纯粹CPU中的代码,基本的注释在代码中
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
#include "device_atomic_functions.h"
#include <cuda.h>
#include "book.h"
#include <cpu_bitmap.h>
#include <stdio.h>
#define DIM 1000 //图像的像素边长大小
struct cuComplex
{
float r;
float i;
cuComplex(float a, float b) : r(a), i(b) {}
float magnitude2() { return r * r + i * i; } //计算复数的模值
cuComplex operator* (const cuComplex& a)
{
return cuComplex(r * a.r - i * a.i, i * a.r + r * a.i);
}
cuComplex operator+ (const cuComplex& a)
{
return cuComplex(r + a.r, i + a.i);
}
};
int julia(int x, int y)
{
const float scale = 1.5; //放大倍率
float jx = scale * (float)(DIM / 2 - x) / (DIM / 2); //坐标变换,投影到-1~1scale
float jy = scale * (float)(DIM / 2 - y) / (DIM / 2);
cuComplex c(-0.8, 0.156); //基数
cuComplex a(jx, jy);
int i = 0;
for (i = 0; i < 200; i++) //迭代
{
a = a * a + c;
if (a.magnitude2() > 1000)
return 0;
}
return 1;
}
void kernel(unsigned char* ptr)
{
for (int y = 0; y < DIM; y++) //遍历整个bitmap
{
for (int x = 0; x < DIM; x++)
{
int offset = x + y * DIM;
int juliaValue = julia(x, y);
//注意openGL这里的颜色格式是RGBA,000为黑色
ptr[offset * 4 + 0] = 255 * juliaValue;
ptr[offset * 4 + 1] = 0;
ptr[offset * 4 + 2] = 0;
ptr[offset * 4 + 3] = 255;
}
}
}
int main()
{
CPUBitmap bitmap(DIM, DIM);
unsigned char* ptr = bitmap.get_ptr();
kernel(ptr); //运行渲染
bitmap.display_and_exit();
}
GPU Julia Set
注意由于内核函数是global的,要在GPU上运行需要将其调用的julia函数加上device。又因为,device函数只能由device函数或者global函数调用,所以最好把结构体中的所有函数都加上device。
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
#include "device_atomic_functions.h"
#include <cuda.h>
#include "book.h"
#include <cpu_bitmap.h>
#include <stdio.h>
//小于65536
#define DIM 1000 //图像的像素边长大小
struct cuComplex
{
float r;
float i;
__device__ cuComplex(float a, float b) : r(a), i(b) {}
__device__ float magnitude2() { return r * r + i * i; } //计算复数的模值
__device__ cuComplex operator* (const cuComplex& a)
{
return cuComplex(r * a.r - i * a.i, i * a.r + r * a.i);
}
__device__ cuComplex operator+ (const cuComplex& a)
{
return cuComplex(r + a.r, i + a.i);
}
};
__device__ int julia(int x, int y)
{
const float scale = 1.5; //放大倍率
float jx = scale * (float)(DIM / 2 - x) / (DIM / 2); //坐标变换,投影到-1~1scale
float jy = scale * (float)(DIM / 2 - y) / (DIM / 2);
cuComplex c(-0.8, 0.156); //基数
cuComplex a(jx, jy);
int i = 0;
for (i = 0; i < 200; i++) //迭代
{
a = a * a + c;
if (a.magnitude2() > 1000)
return 0;
}
return 1;
}
__global__ void kernel(unsigned char* ptr)
{
int x = blockIdx.x; //纵向线程索引(x方向朝右,是行)
int y = blockIdx.y; //纵向线程索引(y方向朝下,是列)
int offset = x + y * gridDim.x;
int juliaValue = julia(x, y);
ptr[offset * 4 + 0] = 255 * juliaValue;
ptr[offset * 4 + 1] = 0;
ptr[offset * 4 + 2] = 0;
ptr[offset * 4 + 3] = 255;
}
int main()
{
CPUBitmap bitmap(DIM, DIM);
unsigned char* dev_bitmap;
//在GPU中分配空间
HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap, bitmap.image_size()));
dim3 grid(DIM, DIM); //dim3结构体
kernel <<<grid, 1 >>> (dev_bitmap); //一个线程块中的线程网络1000x1000
HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap, bitmap.image_size(), cudaMemcpyDeviceToHost)); //将dev_bitmap中的内容从device拷贝到cpu中
bitmap.display_and_exit();
HANDLE_ERROR(cudaFree(dev_bitmap));
}
参考资料
详解 CUDA By Example 中的 Julia Set 绘制GPU优化的更多相关文章
- Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...
- Scala 深入浅出实战经典 第60讲:Scala中隐式参数实战详解以及在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
- 详解OJ(Online Judge)中PHP代码的提交方法及要点【举例:ZOJ 1001 (A + B Problem)】
详解OJ(Online Judge)中PHP代码的提交方法及要点 Introduction of How to submit PHP code to Online Judge Systems Int ...
- 详解Linux下iptables中的DNAT与SNAT设置(转)
详解Linux下iptables中的DNAT与SNAT设置 这篇文章主要介绍了Linux下iptables中的DNAT与SNAT设置,是Linux网络配置中的基础知识,需要的朋友可以参考下 原文连 ...
- Java网络编程和NIO详解1:JAVA 中原生的 socket 通信机制
Java网络编程和NIO详解1:JAVA 中原生的 socket 通信机制 JAVA 中原生的 socket 通信机制 摘要:本文属于原创,欢迎转载,转载请保留出处:https://github.co ...
- 详解在Linux系统中安装Tomcat
本文以在CentOS 7.6中安装Tomcat8.5为例进行安装,其他系统和版本都是大同小异的. 安装JDK 安装Tomcat之前,需要先安装JDK,可以参看之前的文章详解在Linux系统中安装JDK ...
- 详解如何在CentOS7中使用Nginx和PHP7-FPM安装Nextcloud
转载地址:https://www.jb51.net/article/109382.htm 这篇文章主要介绍了详解如何在CentOS7中使用Nginx和PHP7-FPM安装Nextcloud,会通过 N ...
- 详解如何在Laravel中增加自定义全局函数
http://www.php.cn/php-weizijiaocheng-383928.html 如何在Laravel中增加自定义全局函数?在我们的应用里经常会有一些全局都可能会用的函数,我们应该怎么 ...
- 第7.18节 案例详解:Python类中装饰器@staticmethod定义的静态方法
第7.18节 案例详解:Python类中装饰器@staticmethod定义的静态方法 上节介绍了Python中类的静态方法,本节将结合案例详细说明相关内容. 一. 案例说明 本节定义了类Sta ...
随机推荐
- 对权值线段树剪枝的误解--以HDU6703为例
引子 对hdu6703,首先将问题转化为"询问一个排列中大于等于k的值里,下标超过r的最小权值是多少" 我们采用官方题解中的做法:权值线段树+剪枝 对(a[i],i)建线段树,查询 ...
- BZOJ 3339 Rmq Problem(离线+线段树+mex函数)
题意: q次询问,问[l,r]子区间的mex值 思路: 对子区间[l,r],当l固定的时候,[l,r]的mex值对r单调不减 对询问按照l离线,对当前的l,都有维护一个线段树,每个叶节点保存[l,r] ...
- Qt 中QPainter 使用中出现的问题
这两天在使用QPainter的过程中出现了一些问题,记录一下. 测试程序很简单,写一个继承自QWidget的类,重载其paintEvent函数进行绘图. case1: 在paintEvent函数中使用 ...
- 转:RBAC如何设计一个权限系统
前言 权限管理是所有后台系统的都会涉及的一个重要组成部分,主要目的是对不同的人访问资源进行权限的控制,避免因权限控制缺失或操作不当引发的风险问题,如操作错误,隐私数据泄露等问题.目前在公司负责权限这块 ...
- VFP日期时间转中文日期时间
本函数原为VFP中取日期转中文日期方式,后增加日期时间处理,并改用Iif及ICase修改原代码.Function DateTime2CHNParameters pdDate,plTime*!* pdD ...
- 对象级别锁 vs 类级别锁(Java)
前言 对于多线程(并发)和Spring Boot这两块在同步进行学习中,在看到使用synchronized关键字使操作同步时,看到和C#中不一样的东西,所以这里呢,就深入学习了下,若有错误之处,还望指 ...
- bootstrap的自适应 和细节点
bootstrap的自适应尽量少用绝对宽度px来定义大小,这会导致缩小屏幕宽度时相冲突,多使用百分比来改变位置.. 遇到不能用margin和padding来改变位置时,首先应该想到绝对定位和相对定位( ...
- 剖析Java OutOfMemoryError异常
剖析Java OutOfMemoryError异常 在JVM中,除了程序计数器外,虚拟机内存中的其他几个运行时区域都有发生OutOfMemoryError异常的可能,本篇就来深入剖析一下各个区域出现O ...
- css如何玩转有序无序列表项list样式
在无序列表ul>li中,无线列表的标志是出现在各列表前面的圆点.在有序列表ol>li中,前面默认带有数字,如何修改列表前面的项目符号,只需要通过list-style调整就好,常见的符号有( ...
- Linux_simpl shell-利用Shell脚本for循环输出系统中的用户及其Shell
[root@localhost ~]# vim user.sh 1 #!/bin/bash 2 for i in `cut -d ":" -f1 /etc/passwd`; 3 d ...