【算法•日更•第三十九期】迭代加深搜索:洛谷SP7579 YOKOF - Power Calculus 题解
废话不多说,直接上题:
SP7579 YOKOF - Power Calculus
题意翻译
(略过没有营养的题干)
题目大意: 给出正整数n,若只能使用乘法或除法,输出使x经过运算(自己乘或除自己,以及乘或除运算过程中产生的中间结果)变成x^n的最少步数
输入格式: 若干行数据,每行一个正整数n,数据以单独成行的0结束
输出格式: 若干行数据,对应每行输入的n所需的步数
题目描述
Starting with x and repeatedly multiplying by x, we can compute x ^{31}31 with thirty multiplications:
x ^{2}2 = x * x, x ^{3}3 = x ^{2}2 * x, x ^{4}4 = x ^{3}3 * x, ... , x ^{31}31 = x ^{30}30 * x.
The operation of squaring can appreciably shorten the sequence of multiplications. The following is a way to compute x ^{31}31 with eight multiplications:
x ^{2}2 = x * x, x ^{3}3 = x ^{2}2 * x, x ^{6}6 = x ^{3}3 * x ^{3}3 , x ^{7}7 = x ^{6}6 * x, x ^{14}14 = x ^{7}7 * x ^{7}7 ,
x ^{15}15 = x ^{14}14 * x, x ^{30}30 = x ^{15}15 * x ^{15}15 , x ^{31}31 = x ^{30}30 * x.
This is not the shortest sequence of multiplications to compute x ^{31}31 . There are many ways with only seven multiplications. The following is one of them:
x ^{2}2 = x * x, x ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{10}10 = x ^{8}8 * x ^{2}2 ,
x ^{20}20 = x ^{10}10 * x ^{10}10 , x ^{30}30 = x ^{20}20 * x ^{10}10 , x ^{31}31 = x ^{30}30 * x.
There however is no way to compute x ^{31}31 with fewer multiplications. Thus this is one of the most efficient ways to compute x ^{31}31 only by multiplications.
If division is also available, we can find a shorter sequence of operations. It is possible to compute x ^{31}31 with six operations (five multiplications and one division):
x ^{2}2 = x * x, x ^{4}4 = x ^{2}2 * x ^{2}2 , x ^{8}8 = x ^{4}4 * x ^{4}4 , x ^{16}16 = x ^{8}8 * x ^{8}8 , x ^{32}32 = x ^{16}16 * x ^{16}16 , x ^{31}31 = x ^{32}32÷ x.
This is one of the most efficient ways to compute x ^{31}31 if a division is as fast as a multiplication.
Your mission is to write a program to find the least number of operations to compute x ^{n}n by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence of operations should be x to a positive integer's power. In other words, x ^{-3}−3 , for example, should never appear.
输入格式
The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to 1000. The end of the input is indicated by a zero.
输出格式
Your program should print the least total number of multiplications and divisions required to compute x ^{n}n starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.
输入输出样例
1
31
70
91
473
512
811
953
0
0
6
8
9
11
9
13
12
这道题有点尴尬,大多都是英语,幸好浏览器是可以翻译的。
先来确定算法。
这道题先来思考用什么算法?似乎没什么特殊的算法,那么就只能搜索了。
是深搜呢?还是广搜呢?广搜没前途,状态不好记录,深搜又控制不住,一条路走到黑。
其实这道题直接迭代加深搜索就可以了。
什么是迭代加深搜索?就是深搜设定上一个搜索的边界,逐步加深这个边界,这样每次会限制其搜索的深度,就不会一条路走到黑了。
但是这是依旧相当的暴力啊!!!
小编试了一下,连样例数据都卡到爆了,所以必须进一步优化,这里使用剪枝优化。
如果当前的指数自乘剩下的次数之后仍然比n小,那么我们就一定会果断舍弃,这就是剪枝的内容。
代码如下:
#include<iostream>
using namespace std;
int num[],n,idt;//用num来存储已经创造过的可以用于计算的数,idt是限制的深度
bool dfs(int step,int now)//step是当前用了多少次运算,now是当前指数
{
if(now<=||step>idt||now<<(idt-step)<n) return false;//判断一定不能成功的条件和剪枝
if(now<<(idt-step)==n) return true;//剪枝
if(now==n) return true;//如果正确,那么就返回
num[step]=now;//存储一下这个指数
for(int i=;i<=step;i++)
{
if(dfs(step+,now+num[i])) return true;//乘
if(dfs(step+,now-num[i])) return true;//除
}
return false;//不成功一定要最后返回false
}
int main()
{
while()
{
cin>>n;
if(n==) break;
for(idt=;;idt++)//从0开始枚举深度
if(dfs(,)==true) break;//发现可以就结束循环
cout<<idt<<endl;
}
return ;
}
【算法•日更•第三十九期】迭代加深搜索:洛谷SP7579 YOKOF - Power Calculus 题解的更多相关文章
- 【算法•日更•第三十五期】FF算法优化:EK算法
▎写在前面 FF算法传送门 之前我们已经学过了FF算法(全称Ford-Fulkerson算法)来找最大流,但是这种算法仍有诸多不对的地方. 其实这种算法存在着严重的效率的问题,请看下面的图: 以这个图 ...
- 【算法•日更•第三十期】区间动态规划:洛谷P4170 [CQOI2007]涂色题解
废话不多说,直接上题: P4170 [CQOI2007]涂色 题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符 ...
- 【算法•日更•第五十四期】知识扫盲:什么是operator?
▎前言 这个东西和迭代器长的很像,但是比迭代器常见的多. 今天就来浅谈operator. ▎定义 operator是C#.C++和pascal的关键字,它和运算符一起使用,表示一个运算符函数,理解时应 ...
- 【算法•日更•第三十一期】KMP算法
▎前言 这次要讲的HMP算法KMP算法很简单,是用于处理字符串的,之前一直以为很难,其实也不过如此(说白了就是优化一下暴力). ▎处理的问题 通常处理的问题是这样的:给定两个字符串s1和s2,其中s1 ...
- 【算法•日更•第三十二期】教你用出windows体验的Linux
▎前言 小编昨天闲的不行,就装了一个linux系统,linux的发行版很多,小编认为ubuntu很好用,于是就在使用ubuntu. 没错,我现在就在使用ubuntu来写博客. 刚才还装了一个QQ,不过 ...
- 【算法•日更•第三十七期】A*寻路算法
▎写在前面 这是一种搜索算法,小编以前总是念成A乘寻路算法,没想到一直念错. 请大家都念成A星寻路算法,不要像小编一样丢人了. ▎A*寻路算法 ☞『引入』 相信大家都或多或少的玩过一些游戏吧,那么游戏 ...
- 【算法•日更•第五十期】二分图(km算法)
▎前言 戳开这个链接看看,惊不惊喜,意不意外?传送门. 没想到我的博客竟然被别人据为己有了,还没办法投诉. 这年头写个博客太难了~~~ 之前小编写过了二分图的一些基础知识和匈牙利算法,今天来讲一讲km ...
- 【算法•日更•第四十二期】离散傅里叶变换(DFT)
▎前言 小编相当的菜,这篇博客难度稍高,所以有些可能不会带有证明,博客中更多的是定义. 我们将要学到的东西: 复数 暴力多项式乘法 DFT 当然,小编之前就已经写过一篇博客了,主要讲的就是基础多项式, ...
- 【算法•日更•第四十三期】QQ for linux
废话不多说,直接看一张图: 没错,这是QQ,但是这有什么稀奇的?但是在Linux上使用QQ就很稀奇了. 众所周知,腾讯早就已经对Linux下的QQ和微信停止了服务,即便是网页版也不能用,通信这一直是小 ...
随机推荐
- C++语法小记---经典问题之一(malloc和new的纠缠)
malloc和new以及free和delete的区分 new和malloc以及delete和free的区别 new和delete是C++的关键字,malloc和free是库函数 new和delete会 ...
- 17 个 Python 特别实用的操作技巧,记得收藏!
Python 是一门非常优美的语言,其简洁易用令人不得不感概人生苦短.在本文中,作者 Gautham Santhosh 带我们回顾了 17 个非常有用的 Python 技巧,例如查找.分割和合并列表等 ...
- Python 编程语言的核心是什么?
01 Python 编程语言的核心是什么? 为什么要问这个问题? 我想要用Python实现WebAssembly,这并不是什么秘密.这不仅可以让Python进入浏览器,而且由于iOS和Andr ...
- mybatis连接池
连接池 在 Mybatis 中,数据源 dataSource 共有三类,分别是: UNPOOLED : 不使用连接池的数据源.采用传统的 javax.sql.DataSource 规范中的连接池,My ...
- git问题解决
1.如果系统中有一些配置文件在服务器上做了配置修改,然后后续开发又新添加一些配置项的时候, 在发布这个配置文件的时候,会发生代码冲突: error: Your local changes to the ...
- ASP.NET WebAPI2复杂请求跨域设置
ASP.Net Core的跨域设置比较简单 官方都整合了 具体的参见微软官方文档: https://docs.microsoft.com/zh-cn/aspnet/core/security/cor ...
- Go语言系列之手把手教你撸一个ORM(一)
项目地址:https://github.com/yoyofxteam/yoyodata 欢迎星星,感谢 前言:最近在学习Go语言,就出于学习目的手撸个小架子,欢迎提出宝贵意见,项目使用Mysql数据库 ...
- OpenWrt 编译分割
本文主要参考:http://macbruins.com/2011/05/08/downloading-sources-for-building-openwrt/ OpenWrt系统在buildroot ...
- java基础(九)--方法重载
如System.out.println()方法即是方法重载的. 以下举例说明自定义sum()方法的重载 package cnblogs; public class TestBase09MathRelo ...
- org.apache.ibatis.reflection.ReflectionException: There is no getter for property named XXX 异常的解决办法。(亲测,一次成功!) #Mybatis
今天在用Mybatis的时,写测试验证插入操作时出现错误org.apache.ibatis.reflection.ReflectionException: There is no getter for ...