4.23 子集 分数规划 二分 贪心 set 单峰函数 三分


思维题。
显然考虑爆搜。然后考虑n^2能做不能。
容易想到枚举中间的数字mid 然后往mid两边加数字 使其整个集合权值最大。
这里有一个比较显然的贪心就不再赘述了。
可以发现这样做对于集合是奇数的时候可以遍历到所有最优的情况。这一步复杂度为n^2.
但是值得注意的是 如果集合为偶数的时候怎么解决 暴力枚举两个数字在中间这复杂度已经是n^3的了 再向两边拓展复杂度会更高。
有多种解决方法:1 尝试证明偶数的序列一定没有奇数的优。2 尝试证明两个数字只有是相邻的时候比其他不相邻的更优 3 使用固定左端点 移动右端点的方法 这样可以做到n^2.
使用方法3过于无脑 我考试的时候 脑子不太好使没想到1这个性质 只是把2证明了一下。还是很容易证明的。
至此得到了一个n^2的做法。
考虑正解。经过不断的推式子 可以发现这类似于分数规划问题。可以先二分答案。
然后就是对于每一个中点直接求出最大的序列的值是否满足二分的答案即可。
可以发现这样做是n^2logn的。
不过考虑一个端点不断的向右移动可以发现每次最多加入两个数字 所以利用这个东西可以扫一遍得到答案。
不过考试sb了 外面套了一个set简化代码 其实是把代码和时间复杂度都复杂化了 直接记录两个端点就行了。
对于偶数也是如此。时间复杂度nlog.(不过考试的时候套了一个set复杂度nlog^2.
对于题解:容易证明奇数比偶数更优 自证不难。
然后考虑枚举中位数。显然选取的个数与价值是严格单峰的所以三分一下就行了。
code:set代码。
const int MAXN=200010;
int n,top,maxx;db ans;
int a[MAXN],b[MAXN],vis[MAXN];
multiset<int>s1,s2;
multiset<int>::iterator it1,it2;
inline void dfs(int x)
{
if(x==n+1)
{
top=0;db cnt=0;
rep(1,n,i)if(vis[i])b[++top]=a[i],cnt+=a[i];
cnt=cnt/top;
if(top&1)cnt-=b[(top>>1)+1];
else cnt-=(1.0*b[(top>>1)]+1.0*b[(top>>1)+1])/2;
ans=max(ans,cnt);
return;
}
vis[x]=1;
dfs(x+1);
vis[x]=0;
dfs(x+1);
}
inline int check(db x)
{
db sum1=0,sum2=x;
int L=0,R=n;ll cnt=0;
s1.clear();s2.clear();
rep(2,n,i)//处理单个中位数.
{
L=L==i-2?i-1:L;
if(s1.size())//更改
{
it1=s1.begin();
sum1-=*it1;
s1.erase(it1);
sum1+=a[i-1];
s1.insert(a[i-1]);
++L;
}
if(a[L]+a[R]-x-x-a[i]-a[i]>=0&&R>i&&L)//插入
{
s1.insert(a[L]);sum2+=x+x;
s2.insert(a[R]);
sum1+=a[L];sum1+=a[R];cnt+=2;
--R;--L;
}
if(R+1==i)
{
it1=s1.begin();
sum1-=*it1;
it2=s2.begin();
sum1-=*it2;
s1.erase(it1);
s2.erase(it2);
++R;++L;cnt-=2;
sum2=sum2-x-x;
}
while(s1.size())
{
it1=s1.begin();
it2=s2.begin();
if(*it1+*it2-x-x-a[i]-a[i]<0)
{
sum1-=*it1;
sum1-=*it2;cnt-=2;
s1.erase(it1);
s2.erase(it2);
sum2=sum2-x-x;
++R;++L;
}
else break;
}
if(sum1-sum2-cnt*a[i]>=0)return 1;
}
return 0;
}
int main()
{
freopen("subset.in","r",stdin);
freopen("subset.out","w",stdout);
get(n);
rep(1,n,i)get(a[i]),maxx=max(maxx,a[i]);
sort(a+1,a+1+n);
if(n<=20)
{
dfs(1);
printf("%.5lf\n",ans);
return 0;
ans=0;
}
if(n<=2000)
{
rep(1,n,i)//枚举中位数的位置
{
db sum=0;int cnt=1;
for(int j=1;j<=min(i-1,n-i);++j)
{
cnt+=2;
sum+=a[i-j]+a[n-j+1]-a[i]-a[i];
ans=max(ans,sum/cnt);
}
}
printf("%.5lf\n",ans);
return 0;
}
db l=0,r=maxx;
while(l+EPS<r)
{
db mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.5lf\n",r);
return 0;
}
4.23 子集 分数规划 二分 贪心 set 单峰函数 三分的更多相关文章
- 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)
V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.
- hdu6070(分数规划/二分+线段树区间更新,区间最值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...
- BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)
题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...
- POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)
用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...
- POJ - 3111 K Best 0-1分数规划 二分
K Best Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 12812 Accepted: 3290 Case Time ...
- 51nod 1257 01分数规划/二分
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...
- 2018年东北农业大学春季校赛 I wyh的物品【01分数规划/二分】
链接:https://www.nowcoder.com/acm/contest/93/I来源:牛客网 题目描述 wyh学长现在手里有n个物品,这n个物品的重量和价值都告诉你,然后现在让你从中选取k个, ...
- 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)
题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...
- bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】
01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...
随机推荐
- JavaScript函数使用知识点回顾
JS函数本质更像一个对象,有属性和方法. 将函数定义作为对象的属性,则称之为对象方法:函数如果用于创建新的对象,则称之为对象的构造函数. (1)JS使用关键字 function 定义函数. 函数可 ...
- 006.Nginx访问控制
一 Nginx连接限制 1.1 HTTP协议的连接与请求 HTTP是建立在TCP, 一次HTTP请求需要先建立TCP三次握手(称为TCP连接),在连接的基础上再进行HTTP请求. HTTP请求建立在一 ...
- CSS(二)- 选择器 - 伪元素和伪类(思维导图)
伪元素 伪元素可以创建一些文档语言无法创建的虚拟元素.比如:文档语言没有一种机制可以描述元素内容的第一个字母或第一行,但伪元素可以做到(::first-letter.::first-line).同时, ...
- Java中的堆和栈以及堆栈的区别
在正式内容开始之前要说明一点,我们经常所说的堆栈堆栈是堆和栈统称,堆是堆,栈是栈,合在一起统称堆栈: 1.栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方.与C++不同,Jav ...
- redis(十四):Redis 有序集合(sorted set)
Redis 有序集合(sorted set) Redis 有序集合和集合一样也是string类型元素的集合,且不允许重复的成员. 不同的是每个元素都会关联一个double类型的分数.redis正是通过 ...
- Quartz.Net系列(十四):详解Job中两大特性(DisallowConcurrentExecution、PersistJobDataAfterExecution)
1.DisallowConcurrentExceution 从字面意思来看也就是不允许并发执行 简单的演示一下 [DisallowConcurrentExecution] public class T ...
- LINQ多表查询
#region Group,Join //只有join,没有into,内联(inner join) //var sql = from c in sdb.Classic // join s in sdb ...
- python3将字符串unicode转换为中文
在我们的python使用过程中,可能会遇到这样的情况: 我们得到的中文数据是unicode编码类型的,这在python中是没有问题的,可以直接打印显示为中文. 但是,如果我们需要和其它语言或前端进行交 ...
- 痞子衡嵌入式:SNVS Master Key仅在i.MXRT10xx Hab关闭时才能用于DCP加解密
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是i.MXRT系列中数据协处理器DCP使用SNVS Master Key加解密的注意事项. i.MXRT不仅仅是处理性能超强的MCU,也是 ...
- 集训作业 洛谷P1469 找筷子
这个题的代码真的是短的不得了呢. 有个神奇的东西叫异或,写起来是这个样子的^. 这个东西可以查看2个数的二进制某位是否相同,相同取0,不同取1.虽然我用的不熟,但我可以想出来,如果2个相同的数异或,答 ...