思维题。

显然考虑爆搜。然后考虑n^2能做不能。

容易想到枚举中间的数字mid 然后往mid两边加数字 使其整个集合权值最大。

这里有一个比较显然的贪心就不再赘述了。

可以发现这样做对于集合是奇数的时候可以遍历到所有最优的情况。这一步复杂度为n^2.

但是值得注意的是 如果集合为偶数的时候怎么解决 暴力枚举两个数字在中间这复杂度已经是n^3的了 再向两边拓展复杂度会更高。

有多种解决方法:1 尝试证明偶数的序列一定没有奇数的优。2 尝试证明两个数字只有是相邻的时候比其他不相邻的更优 3 使用固定左端点 移动右端点的方法 这样可以做到n^2.

使用方法3过于无脑 我考试的时候 脑子不太好使没想到1这个性质 只是把2证明了一下。还是很容易证明的。

至此得到了一个n^2的做法。

考虑正解。经过不断的推式子 可以发现这类似于分数规划问题。可以先二分答案。

然后就是对于每一个中点直接求出最大的序列的值是否满足二分的答案即可。

可以发现这样做是n^2logn的。

不过考虑一个端点不断的向右移动可以发现每次最多加入两个数字 所以利用这个东西可以扫一遍得到答案。

不过考试sb了 外面套了一个set简化代码 其实是把代码和时间复杂度都复杂化了 直接记录两个端点就行了。

对于偶数也是如此。时间复杂度nlog.(不过考试的时候套了一个set复杂度nlog^2.

对于题解:容易证明奇数比偶数更优 自证不难。

然后考虑枚举中位数。显然选取的个数与价值是严格单峰的所以三分一下就行了。

code:set代码。

const int MAXN=200010;
int n,top,maxx;db ans;
int a[MAXN],b[MAXN],vis[MAXN];
multiset<int>s1,s2;
multiset<int>::iterator it1,it2;
inline void dfs(int x)
{
if(x==n+1)
{
top=0;db cnt=0;
rep(1,n,i)if(vis[i])b[++top]=a[i],cnt+=a[i];
cnt=cnt/top;
if(top&1)cnt-=b[(top>>1)+1];
else cnt-=(1.0*b[(top>>1)]+1.0*b[(top>>1)+1])/2;
ans=max(ans,cnt);
return;
}
vis[x]=1;
dfs(x+1);
vis[x]=0;
dfs(x+1);
}
inline int check(db x)
{
db sum1=0,sum2=x;
int L=0,R=n;ll cnt=0;
s1.clear();s2.clear();
rep(2,n,i)//处理单个中位数.
{
L=L==i-2?i-1:L;
if(s1.size())//更改
{
it1=s1.begin();
sum1-=*it1;
s1.erase(it1);
sum1+=a[i-1];
s1.insert(a[i-1]);
++L;
}
if(a[L]+a[R]-x-x-a[i]-a[i]>=0&&R>i&&L)//插入
{
s1.insert(a[L]);sum2+=x+x;
s2.insert(a[R]);
sum1+=a[L];sum1+=a[R];cnt+=2;
--R;--L;
}
if(R+1==i)
{
it1=s1.begin();
sum1-=*it1;
it2=s2.begin();
sum1-=*it2;
s1.erase(it1);
s2.erase(it2);
++R;++L;cnt-=2;
sum2=sum2-x-x;
}
while(s1.size())
{
it1=s1.begin();
it2=s2.begin();
if(*it1+*it2-x-x-a[i]-a[i]<0)
{
sum1-=*it1;
sum1-=*it2;cnt-=2;
s1.erase(it1);
s2.erase(it2);
sum2=sum2-x-x;
++R;++L;
}
else break;
}
if(sum1-sum2-cnt*a[i]>=0)return 1;
}
return 0;
}
int main()
{
freopen("subset.in","r",stdin);
freopen("subset.out","w",stdout);
get(n);
rep(1,n,i)get(a[i]),maxx=max(maxx,a[i]);
sort(a+1,a+1+n);
if(n<=20)
{
dfs(1);
printf("%.5lf\n",ans);
return 0;
ans=0;
}
if(n<=2000)
{
rep(1,n,i)//枚举中位数的位置
{
db sum=0;int cnt=1;
for(int j=1;j<=min(i-1,n-i);++j)
{
cnt+=2;
sum+=a[i-j]+a[n-j+1]-a[i]-a[i];
ans=max(ans,sum/cnt);
}
}
printf("%.5lf\n",ans);
return 0;
}
db l=0,r=maxx;
while(l+EPS<r)
{
db mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.5lf\n",r);
return 0;
}

4.23 子集 分数规划 二分 贪心 set 单峰函数 三分的更多相关文章

  1. 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)

    V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.

  2. hdu6070(分数规划/二分+线段树区间更新,区间最值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...

  3. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  4. POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)

    用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...

  5. POJ - 3111 K Best 0-1分数规划 二分

    K Best Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 12812   Accepted: 3290 Case Time ...

  6. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  7. 2018年东北农业大学春季校赛 I wyh的物品【01分数规划/二分】

    链接:https://www.nowcoder.com/acm/contest/93/I来源:牛客网 题目描述 wyh学长现在手里有n个物品,这n个物品的重量和价值都告诉你,然后现在让你从中选取k个, ...

  8. 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)

    题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...

  9. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

随机推荐

  1. 关于前端数据&逻辑的思考

    最近重构了一个项目,一个基于redux模型的react-native项目,目标是在混乱的代码中梳理出一个清晰的结构来,为了实现这个目标,首先需要对项目的结构做分层处理,将各个逻辑分离出来,这里我是基于 ...

  2. Redis四大模式之主从配置

    Redis工作模式主要有单机模式.主从模式(slave).哨兵模式(sentinel).集群模式(cluster)这四种,本文主要讲解一下主从模式的部署方式. 我是windows单机进行的这套搭建操作 ...

  3. MySQL 对window函数执行sum函数疑似Bug

    MySQL 对window函数执行sum函数疑似Bug 使用MySql的窗口函数统计数据时,发现一个小的问题,与大家一起探讨下. 环境配置: mysql-installer-community-8.0 ...

  4. SQLserver , MySQL的区别和各自的一些简单方法案列

    SQL Server数据库和MySQL数据库有什么区别呢?今天我们来分析一下这两种数据库的不同之处以及这两种数据库的一些简单用途:SQL Server数据库和MySQL数据库有什么区别: 对于程序开发 ...

  5. scrapy 基础组件专题(十二):scrapy 模拟登录

    1. scrapy有三种方法模拟登陆 1.1直接携带cookies 1.2找url地址,发送post请求存储cookie 1.3找到对应的form表单,自动解析input标签,自动解析post请求的u ...

  6. During handling of the above exception, another exception occurred:

    今天在计算机矩阵相关性,准备删除相关性高的列中,出现了这样的问题: During handling of the above exception, another exception occurred ...

  7. db2数据库创建删除主键约束和创建删除唯一键约束

    创建.删除唯一约束: db2 "alter table tabname add unique(colname)" db2 "alter table tabname dro ...

  8. Python Ethical Hacking - Intercepting and Modifying Packets

    INTERCEPTING & MODIFYING PACKETS Scapy can be used to: Create packets. Analyze packets. Send/rec ...

  9. 又被逼着优化代码,这次我干掉了出入参 Log日志

    本文收录在个人博客:www.chengxy-nds.top,技术资源共享. 最近技术部突然刮起一阵 review 代码的小风,挨个项目组过代码,按理说这应该是件挺好的事,让别人指出自己代码中的不足,查 ...

  10. Ubuntu Server 19.04配置静态IP

    这个/etc/netplan下默认有个文件50-cloud-init.yaml,直接修改它就行了 sudo vim /etc/netplan/50-cloud-init.yaml 网口名字enp0s3 ...