思维题。

显然考虑爆搜。然后考虑n^2能做不能。

容易想到枚举中间的数字mid 然后往mid两边加数字 使其整个集合权值最大。

这里有一个比较显然的贪心就不再赘述了。

可以发现这样做对于集合是奇数的时候可以遍历到所有最优的情况。这一步复杂度为n^2.

但是值得注意的是 如果集合为偶数的时候怎么解决 暴力枚举两个数字在中间这复杂度已经是n^3的了 再向两边拓展复杂度会更高。

有多种解决方法:1 尝试证明偶数的序列一定没有奇数的优。2 尝试证明两个数字只有是相邻的时候比其他不相邻的更优 3 使用固定左端点 移动右端点的方法 这样可以做到n^2.

使用方法3过于无脑 我考试的时候 脑子不太好使没想到1这个性质 只是把2证明了一下。还是很容易证明的。

至此得到了一个n^2的做法。

考虑正解。经过不断的推式子 可以发现这类似于分数规划问题。可以先二分答案。

然后就是对于每一个中点直接求出最大的序列的值是否满足二分的答案即可。

可以发现这样做是n^2logn的。

不过考虑一个端点不断的向右移动可以发现每次最多加入两个数字 所以利用这个东西可以扫一遍得到答案。

不过考试sb了 外面套了一个set简化代码 其实是把代码和时间复杂度都复杂化了 直接记录两个端点就行了。

对于偶数也是如此。时间复杂度nlog.(不过考试的时候套了一个set复杂度nlog^2.

对于题解:容易证明奇数比偶数更优 自证不难。

然后考虑枚举中位数。显然选取的个数与价值是严格单峰的所以三分一下就行了。

code:set代码。

const int MAXN=200010;
int n,top,maxx;db ans;
int a[MAXN],b[MAXN],vis[MAXN];
multiset<int>s1,s2;
multiset<int>::iterator it1,it2;
inline void dfs(int x)
{
if(x==n+1)
{
top=0;db cnt=0;
rep(1,n,i)if(vis[i])b[++top]=a[i],cnt+=a[i];
cnt=cnt/top;
if(top&1)cnt-=b[(top>>1)+1];
else cnt-=(1.0*b[(top>>1)]+1.0*b[(top>>1)+1])/2;
ans=max(ans,cnt);
return;
}
vis[x]=1;
dfs(x+1);
vis[x]=0;
dfs(x+1);
}
inline int check(db x)
{
db sum1=0,sum2=x;
int L=0,R=n;ll cnt=0;
s1.clear();s2.clear();
rep(2,n,i)//处理单个中位数.
{
L=L==i-2?i-1:L;
if(s1.size())//更改
{
it1=s1.begin();
sum1-=*it1;
s1.erase(it1);
sum1+=a[i-1];
s1.insert(a[i-1]);
++L;
}
if(a[L]+a[R]-x-x-a[i]-a[i]>=0&&R>i&&L)//插入
{
s1.insert(a[L]);sum2+=x+x;
s2.insert(a[R]);
sum1+=a[L];sum1+=a[R];cnt+=2;
--R;--L;
}
if(R+1==i)
{
it1=s1.begin();
sum1-=*it1;
it2=s2.begin();
sum1-=*it2;
s1.erase(it1);
s2.erase(it2);
++R;++L;cnt-=2;
sum2=sum2-x-x;
}
while(s1.size())
{
it1=s1.begin();
it2=s2.begin();
if(*it1+*it2-x-x-a[i]-a[i]<0)
{
sum1-=*it1;
sum1-=*it2;cnt-=2;
s1.erase(it1);
s2.erase(it2);
sum2=sum2-x-x;
++R;++L;
}
else break;
}
if(sum1-sum2-cnt*a[i]>=0)return 1;
}
return 0;
}
int main()
{
freopen("subset.in","r",stdin);
freopen("subset.out","w",stdout);
get(n);
rep(1,n,i)get(a[i]),maxx=max(maxx,a[i]);
sort(a+1,a+1+n);
if(n<=20)
{
dfs(1);
printf("%.5lf\n",ans);
return 0;
ans=0;
}
if(n<=2000)
{
rep(1,n,i)//枚举中位数的位置
{
db sum=0;int cnt=1;
for(int j=1;j<=min(i-1,n-i);++j)
{
cnt+=2;
sum+=a[i-j]+a[n-j+1]-a[i]-a[i];
ans=max(ans,sum/cnt);
}
}
printf("%.5lf\n",ans);
return 0;
}
db l=0,r=maxx;
while(l+EPS<r)
{
db mid=(l+r)/2;
if(check(mid))l=mid;
else r=mid;
}
printf("%.5lf\n",r);
return 0;
}

4.23 子集 分数规划 二分 贪心 set 单峰函数 三分的更多相关文章

  1. 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)

    V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.

  2. hdu6070(分数规划/二分+线段树区间更新,区间最值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意: 给出一个题目提交序列, 从中选出一个正确率最小的子串. 选中的子串中每个题目当且仅当最 ...

  3. BZOJ 1758 / Luogu P4292 [WC2010]重建计划 (分数规划(二分/迭代) + 长链剖分/点分治)

    题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. ...

  4. POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)

    用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...

  5. POJ - 3111 K Best 0-1分数规划 二分

    K Best Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 12812   Accepted: 3290 Case Time ...

  6. 51nod 1257 01分数规划/二分

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1257 1257 背包问题 V3 基准时间限制:3 秒 空间限制:1310 ...

  7. 2018年东北农业大学春季校赛 I wyh的物品【01分数规划/二分】

    链接:https://www.nowcoder.com/acm/contest/93/I来源:牛客网 题目描述 wyh学长现在手里有n个物品,这n个物品的重量和价值都告诉你,然后现在让你从中选取k个, ...

  8. 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)

    题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...

  9. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

随机推荐

  1. LESS 原理,一款css的预处理程序Less的使用

    ​Less一种动态样式语言,LESS将CSS赋予了动态语言的特性,如变量,继承,运算,函数...LESS 既可以在客户端上运行 (支持IE 6+, Webkit, Firefox),也可以借助Node ...

  2. embedded database (H2, HSQL or Derby), please put it on the classpath

    Description: Failed to configure a DataSource: 'url' attribute is not specified and no embedded data ...

  3. zookeeper3.5.5 centos7 完全分布式 搭建随记

    zookeeper3.5.5 centos7 完全分布式 搭建随记 这里是当初在三个ECS节点上搭建hadoop+zookeeper+hbase+solr的主要步骤,文章内容未经过润色,请参考的同学搭 ...

  4. Bash的特性

    Bash的特性 1. tab补全 #命令补全 [root@clf ~]# user  #命令补全useradd     userdel     usermod     usernetctl  user ...

  5. python 检索文件内容工具

    公司内部需求一个工具检索目录下的文件在另外的目录中使用次数, 用来优化包体的大小. 此代码效率并不高效, 另添加对应的 后缀检索. 用python 实现比较快速, 另还有缺点是只支持 utf-8 格式 ...

  6. (一)学习了解OrchardCore笔记——开篇:基于asp.net core的OrchardCore

    想深入了解OrchadCore源码许久了,但是读源码的时候遇到很多问题而网上的参考资料太少了(几乎都是OrchadCms不带OrchardCore的),现在解决得差不多了,做下笔记方便自己查看,有错误 ...

  7. SpringCloud组件的停更和替换说明

    SpringCloud的Hoxton版本,和之前的版本相比,用新的组件替换掉了原来大部分的组件,老的组件现在处于 停更不停用 的状况. 详情见下图(× 的表示之前的组件,现在停更了的:√ 的表示新的替 ...

  8. 电商项目app开发

    购物app的开发 首先我们本次要写的是一个电商的项目,项目主要功能有登录.注册.商品展示.轮播图.加入购物车.购物车管理.支付管理.地址管理.个人信息的修改.商品的分类展示.微信支付等等.主要使用vu ...

  9. JVM 学习笔记(四)

    回顾: 在之前的文章中,我们主要体现了当堆内存设置的比较小的情况下,比如:-Xmx20M -Xms20M,在项目运行的过程中,不断往内存中去添加对象, 这时候就会出现OOM,也就是内存溢出,本文章将展 ...

  10. Linux08 /Docker

    Linux08 /Docker 目录 Linux08 /Docker 1. docker简介/安装 2. Docker镜像加速器的设置 3. 核心三要素 镜像仓库/Registry 镜像/Image: ...