spark streaming 消费 kafka入门采坑解决过程
kafka 服务相关的命令
# 开启kafka的服务器
bin/kafka-server-start.sh -daemon config/server.properties &
# 创建topic
bin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic
# 开启kafka的消费者
bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
# 开启kafka的生产者
bin/kafka-console-producer.sh --broker-list bigdata-senior02.ibeifeng.com:9092 --topic orderTopic
# 查看topic
bin/kafka-topics.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --list
# 标记删除kafka的topic
bin/kafka-topics.sh --delete --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic
环境准备(我使用的单机伪分布模式)
首先开启zk,再开启kafka, 并启动kafka的服务
ZK_HOME/bin/zkServer.sh start
KAFKA_HOME/bin/kafka-server-start.sh -daemon config/server.properties &
# 创建topic
bin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic
# 查看topic
bin/kafka-topics.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --list
# 开启kafka的消费者
bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
# 开启kafka的生产者
bin/kafka-console-producer.sh --broker-list bigdata-senior02.ibeifeng.com:9092 --topic orderTopic
通过上面的测试,确保kafka可以正常运行
spark streaming 代码编写(scala2.11.8,spark2.0.0,kafka1.1)
maven依赖
<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka -->
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.11</artifactId> // 这里要特别注意自己的scala版本,不然会运行时会不兼容,
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>
<version>1.1.0</version>
</dependency>
<!--<!– https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka –>-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_2.11</artifactId>
<version>1.6.3</version>
</dependency>
<!-- Spark Core -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<!-- Spark SQL -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.0.0</version>
</dependency>
<!-- Spark Streaming -->
<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>2.0.0</version>
</dependency>
生产端数据生成
/**
* 这是一个数据生产端
*
* 开启服务器,broker, 如果不开启这个会提示没有找到broker
* bin/kafka-server-start.sh -daemon config/server.properties &
*
* 开启消费端
* bin/kafka-console-consumer.sh --zookeeper bigdata-senior02.ibeifeng.com:2181 --topic orderTopic --from-beginning
*/
//object OrderProductor {
// def main(args: Array[String]): Unit = {
//
// val topic = "orderTopic"
// val brokers = "bigdata-senior02.ibeifeng.com:9092"
//
// val props = new util.HashMap[String,Object]()
// props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,brokers)
// props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
// props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
//
// val producer = new KafkaProducer[String,String](props)
//
//
// // 每秒生成10个订单
// while(true){
// (1 to 10).foreach{messageNum =>
// // 地区id, 订单id, 订单金额, 订单时间
// val str = messageNum + "," + Random.nextInt(10)+","+Math.round(Random.nextDouble()*100)+","+ new Date().getTime
// val message = new ProducerRecord[String, String](topic,null,str)
// producer.send(message)
// }
//
// Thread.sleep(1000)
// }
//
// }
//
//}
// Produces some random words between 1 and 100.
object KafkaWordCountProducer {
def main(args: Array[String]) {
val topic = "orderTopic"
val brokers = "bigdata-senior02.ibeifeng.com:9092"
val messagesPerSec = 10
val wordsPerMessage = 5
val props = new util.HashMap[String,Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
while(true) {
(1 to messagesPerSec.toInt).foreach { messageNum =>
val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
.mkString(" ")
val message = new ProducerRecord[String, String](topic, null, str)
producer.send(message)
}
Thread.sleep(1000)
}
}
}
消费数据
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
/**
* Consumes messages from one or more topics in Kafka and does wordcount.
* Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
* <zkQuorum> is a list of one or more zookeeper servers that make quorum
* <group> is the name of kafka consumer group
* <topics> is a list of one or more kafka topics to consume from
* <numThreads> is the number of threads the kafka consumer should use
*
* Example:
* `$ bin/run-example \
* org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03 \
* my-consumer-group topic1,topic2 1`
*/
object KafkaWordCount {
def main(args: Array[String]) {
val zkQuorum = "bigdata-senior02.ibeifeng.com:2181"
val group = "g1"
val topics = "orderTopic"
val numThreads = 2
val conf= new SparkConf().setAppName("StatelessWordCount").setMaster("local[2]") // 核数至少给2,否则不会完成计算
val ssc = new StreamingContext(conf,Seconds(2)) // 两秒进行一个批次
val topicMap = topics.split(",").map((_,numThreads.toInt)).toMap
val wc = KafkaUtils.createStream(ssc,zkQuorum,group,topicMap).map(_._2)
.flatMap(_.split(" "))
.map((_,1))
.reduceByKey(_+_)
.foreachRDD(x=>x.foreach(println))
ssc.start()
ssc.awaitTermination()
}
}
以上就是spark streaming 消费 kafka的helloworld了
===============================================================================================================================
注意点:
1. 一定要选择兼容的版本,否则会出现各种各样奇奇怪怪的问题
2. 在这里卡了将近一周的时间,都是因为上面版本不兼容和导包的时候,出现的失误
3. 如果代码没有问题,没有出现运行时异常,看看版本的兼容性入手,或许更容易找到问题
代码在我的github上,有问题请留言
https://github.com/nulijiushimeili/spark01
spark streaming 消费 kafka入门采坑解决过程的更多相关文章
- Spark streaming消费Kafka的正确姿势
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...
- Spark Streaming消费Kafka Direct方式数据零丢失实现
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...
- 用canal同步binlog到kafka,spark streaming消费kafka topic乱码问题
canal 1.1.1版本之后, 默认支持将canal server接收到的binlog数据直接投递到MQ, 目前默认支持的MQ系统有kafka和RocketMQ. 在投递的时候我们使用的是非压平的消 ...
- Spark Streaming消费Kafka Direct保存offset到Redis,实现数据零丢失和exactly once
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章 ...
- spark streaming消费kafka: Java .lang.IllegalStateException: No current assignment for partition
1 原因是: 多个相同的Spark Streaming同时消费同一个topic,导致的offset问题.关掉多余的任务,就ok了.
- kafka入门(采坑)笔记
前言 之前在工作和学习过程中也会有记笔记的习惯,但是没有发布出来,也因最近各方面的瓶颈急需突破和提升,所以还是要很积极的融入大环境大生态中,好废话不多说,说下这次遇到的问题 第一步启动zk 根据教程安 ...
- Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...
- Spark Streaming之四:Spark Streaming 与 Kafka 集成分析
前言 Spark Streaming 诞生于2013年,成为Spark平台上流式处理的解决方案,同时也给大家提供除Storm 以外的另一个选择.这篇内容主要介绍Spark Streaming 数据接收 ...
- Spark Streaming和Kafka整合是如何保证数据零丢失
转载:https://www.iteblog.com/archives/1591.html 当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢 ...
随机推荐
- Ramnit蠕虫病毒分析和查杀
Ramnit是一种蠕虫病毒.拥有多种传播方式,不仅可以通过网页进行传播,还可以通过感染计算机内可执行文件进行传播.该病毒在2010年第一次被安全研究者发现,从网络威胁监控中可以看出目前仍然有大量的主机 ...
- mysql case when语句的使用
case具有两种格式.简单case函数和case搜索函数. 简单函数 CASE [col_name] WHEN [value1] THEN [result1]-ELSE [default] END 搜 ...
- html图片拖放
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title> ...
- python 中 try...finally... 的优雅实现
1. 关于 try.. finally.. 假如上帝用 python 为每一个来到世界的生物编写程序,那么除去中间过程的种种复杂实现,最不可避免的就是要保证每个实例最后都要挂掉.代码可简写如下: tr ...
- Folx使用教程:怎么通过设置标签分类下载内容
很多Mac OS下载软件从网上下载各种各样的文件,一般默认都会存放在"下载"文件夹中.如果不是经常整理"下载"文件夹,久而久之,该文件夹会变得庞大而杂乱. 如果 ...
- Java进阶专题(十七) 系统缓存架构设计 (上)
前言 我们将先从Redis.Nginx+Lua等技术点出发,了解缓存应用的场景.通过使用缓存相关技术,解决高并发的业务场景案例,来深入理解一套成熟的企业级缓存架构如何设计的.本文Redis部分总结 ...
- 牛客练习赛69 火柴排队 题解(dp)
题目链接 题目大意 给你一个长为n(n<=5e3)的数组a.随机使得k个元素增加d.要你求多大的概率使得,这些数组元素的相对大小不发生改变 输出 n 行每行一个整数,第 i 行的整数表示 k=i ...
- GraphicsLab 之 Atmospheric Scattering (二)
作者:i_dovelemon 日期:2020-11-25 主题:Atmospheric Scattering, Volume Scattering, Rayleigh Scattering, Mie ...
- 盘点腾讯Linux、 C++后台开发面试题,做好充足准备,不怕被Pass
一.C/C++ const 多态 什么类不能被继承 二.网络 网络的字节序 网络知识 TCP三次握手 各种细节 timewait状态 TCP与UDP的区别 概念 适用范围 TCP四次挥 ...
- JVM(四)-虚拟机对象
概述: 上一篇文章,介绍了虚拟机类加载的过程,那么类加载好之后,虚拟机下一步该干什么呢.我们知道java是面向对象的编程语言,所以对象可以说是java'的灵魂,这篇文章我们就来介绍 虚拟机是如何创建对 ...