Linux内核源码分析之setup_arch (四)
前言
Linux内核源码分析之setup_arch (三) 基本上把setup_arch主要的函数都分析了,由于距离上一篇时间比较久了,所以这里重新贴一下大致的流程图,本文主要分析的是bootmem_init函数。
代码分析
bootmem_init函数的结构如下:
find_limits通过存储在meminfo中的内存条信息得到低端内存和高端内存的页框编号,分别放入到min、max_low、max_high中。
static void __init find_limits(unsigned long *min, unsigned long *max_low,
unsigned long *max_high)
{
...
*min = bank_pfn_start(&mi->bank[0]);
for_each_bank (i, mi)
if (mi->bank[i].highmem)
break;
*max_low = bank_pfn_end(&mi->bank[i - 1]);
*max_high = bank_pfn_end(&mi->bank[mi->nr_banks - 1]);
}
arm_bootmem_init对低端内存区域进行管理,流程图如下:
在通过find_limits得到内存的起止页框号之后,通过bootmem_bootmap_pages计算得到需要分配bitmap的大小,分配好bitmap之后调用init_bootmem_node将起止页框号和bitmap信息写入到pgdat中。
/* arch/arm/mm/init.c */
static void __init arm_bootmem_init(unsigned long start_pfn,
unsigned long end_pfn)
{
...
boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
__pfn_to_phys(end_pfn));
node_set_online(0);
pgdat = NODE_DATA(0);
init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
...
}
最后就是把memblock管理的内存移交给bootmem来管理,对于memblock中的空闲区域通过free_bootmem将bitmap中对应的bit置零,而已经使用的内存,即memblock中对应的reserved的区域使用reserve_bootmem将bitmap中对应bit置1。
/* arch/arm/mm/init.c */
static void __init arm_bootmem_init(...)
{
...
/* Free the lowmem regions from memblock into bootmem. */
for_each_memblock(memory, reg) {
...
free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT);
}
/* Reserve the lowmem memblock reserved regions in bootmem. */
for_each_memblock(reserved, reg) {
...
reserve_bootmem(__pfn_to_phys(start),
(end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT);
}
}
在设置好bitmap之后,接下来开始分配对应的page结构体,在分配page结构体内存之前,先统计出各个zone区域内的内存空洞,存放在zhole_size中。
/* arch/arm/mm/init.c */
static void __init arm_bootmem_free(unsigned long min, unsigned long max_low,
unsigned long max_high)
{
...
for_each_memblock(memory, reg) {
...
if (start < max_low) {
unsigned long low_end = min(end, max_low);
zhole_size[0] -= low_end - start;
}
#ifdef CONFIG_HIGHMEM
if (end > max_low) {
unsigned long high_start = max(start, max_low);
zhole_size[ZONE_HIGHMEM] -= end - high_start;
}
#endif
}
...
free_area_init_node(0, zone_size, min, zhole_size);
}
统计好内存空洞之后开始分配page结构体所需要的内存空间,大致流程如下:
calculate_node_totalpages通过zones_size和zholes_size计算出内存页总数和真正可用的内存页数量,分别记录在pgdat->node_spanned_pages和pgdat->node_present_pages中。
/* mm/page_alloc.c */
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
unsigned long node_start_pfn, unsigned long *zholes_size)
{
pg_data_t *pgdat = NODE_DATA(nid);
pgdat->node_id = nid;
pgdat->node_start_pfn = node_start_pfn;
calculate_node_totalpages(pgdat, zones_size, zholes_size);
alloc_node_mem_map(pgdat);
free_area_init_core(pgdat, zones_size, zholes_size);
}
alloc_node_mem_map根据pgdat->node_spanned_pages的大小确定需要分配的page结构体数量,这其中包括了内存空洞部分的区域,分配好之后将起始地址记录到pgdat->node_mem_map中,同时也记录在全局变量mem_map中。
/* mm/page_alloc.c */
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
{
...
if (!pgdat->node_mem_map) {
...
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
end = ALIGN(end, MAX_ORDER_NR_PAGES);
size = (end - start) * sizeof(struct page);
map = alloc_remap(pgdat->node_id, size);
if (!map)
map = alloc_bootmem_node_nopanic(pgdat, size);
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
}
if (pgdat == NODE_DATA(0))
mem_map = NODE_DATA(0)->node_mem_map;
...
}
最后通过free_area_init_core初始化page结构体,大致流程如下:
主要作用是设置每个zone结构体的信息,比如zone的可用空间大小等信息,并把每个zone的page结构体初始化,记录自己所属的zone和node_id,同时把page结构体状态设置为PG_reserved,这里是无差别的设置的,至于空闲的内存页会在后续的mm_init::mem_init::free_all_bootmem中重新释放出来;另外,SetPageReserved是通过宏声明的,所以是无法找到该函数的,其定义在page-flags.h中。
总结
bootmem_init函数的作用是分配bitmap和page结构体所需要的空间,同时把已使用的和空闲的内存区域都标记到bitmap中,然后更新每个zone的内存信息,并把属于每个zone内存空间对应的page结构体进行初始化,且全部都设置为PG_reserved状态。
Linux内核源码分析之setup_arch (四)的更多相关文章
- Linux内核源码分析之setup_arch (二)
1. 概述 接着上一篇<Linux内核源码分析之setup_arch (一)>继续分析,本文首先分析arm_memblock_init函数,然后分析内核启动阶段的是如何进行内存管理的. 2 ...
- Linux内核源码分析之setup_arch (三)
1. 前言 在 Linux内核源码分析之setup_arch (二) 中介绍了当前启动阶段的内存分配函数memblock_alloc,该内存分配函数在本篇将要介绍paging_init中用于页表和内存 ...
- Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7)【转】
原文地址:Linux内核源码分析--内核启动之(4)Image内核启动(setup_arch函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://blog.c ...
- Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3.0 ARMv7)
http://blog.chinaunix.net/uid-20543672-id-3157283.html Linux内核源码分析--内核启动之(3)Image内核启动(C语言部分)(Linux-3 ...
- Linux内核源码分析 day01——内存寻址
前言 Linux内核源码分析 Antz系统编写已经开始了内核部分了,在编写时同时也参考学习一点Linux内核知识. 自制Antz操作系统 一个自制的操作系统,Antz .半图形化半命令式系统,同时嵌入 ...
- Linux内核源码分析方法_转
Linux内核源码分析方法 转自:http://www.cnblogs.com/fanzhidongyzby/archive/2013/03/20/2970624.html 一.内核源码之我见 Lin ...
- Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7)【转】
原文地址:Linux内核源码分析--内核启动之(6)Image内核启动(do_basic_setup函数)(Linux-3.0 ARMv7) 作者:tekkamanninja 转自:http://bl ...
- Linux内核源码分析方法
一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...
- 【转】Linux内核源码分析方法
一.内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次.如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径.我们都 ...
随机推荐
- Code Spell Checker & VSCode 单词拼写验证
Code Spell Checker & VSCode 单词拼写验证 https://marketplace.visualstudio.com/items?itemName=streetsid ...
- How To Install Linux & Nginx & MySQL & PHP (LEMP) stack on Raspberry Pi 3,Raspberry Pi 3,LEMP,Nginx,PHP, LEMP (not LNMP)
1. How To Install Linux & Nginx & MySQL & PHP (LEMP) stack on Raspberry Pi 3 R ...
- iPhone 12 导入通讯录排序 Bug
iPhone 12 导入通讯录排序 Bug iOS iOS 通讯录排序问题 Huawei OK solution iOS 切换中英文,修复排序通讯录 bug Awesome iOS Contacts ...
- Matthew Effect
Matthew Effect 马太效应 / 马修效应 马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的一种现象, 即两极分化现象. 来自于圣经<新约•马太福 ...
- Flutter: 获取本地json数据
FutureBuilder( future: DefaultAssetBundle.of(context).loadString('data/data.json'), builder: (contex ...
- PAUL ADAMS ARCHITECT:费城东北区的房地产市场逆势而行
根据Zillow.com的房产数据,大费城地区前三季度成交房产的平均价格为27.2万美元,较去年同期增长了13.4%,为10年同期最高.即使如此,27.2万的均价与纽约相比依然相距甚远,其中尤其是费城 ...
- 验证销售部门的数据查看权限-脚本demo
1 # coding:utf-8 2 ''' 3 @file: run_old.py 4 @author: jingsheng hong 5 @ide: PyCharm 6 @createTime: ...
- [Python] Matplotlib 图表的绘制和美化技巧
目录 在一张画布中绘制多个图表 加图表元素 气泡图 组合图 直方图 雷达图 树状图 箱形图 玫瑰图 在一张画布中绘制多个图表 Matplotlib模块在绘制图表时,默认先建立一张画布,然后在画布中显示 ...
- 实现TensorRT-7.0插件自由!(如果不踩坑使用TensorRT插件功能)
本系列为新TensorRT的第一篇,为什么叫新,因为之前已经写了两篇关于TensorRT的文章,是关于TensorRT-5.0版本的.好久没写关于TensorRT的文章了,所幸就以新来开头吧~ 接下来 ...
- 【转载】Win10彻底格式化磁盘防止数据恢复的技巧
转载地址 注意 要尽量删除数据,请在运行cipher /w时关闭其他所有应用程序. 1.如果你在格式化磁盘后想要防止数据被恢复, Format 命令,而现在只需在其后添加 /P 参数,即可用随机数据覆 ...