感知机是支持向量机SVM和神经网络的基础

f = sign(wx+b)

这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策略不同,即损失函数不同。

LR是用的均方误差,PLA是用的误分类点到分离超平面的总距离。

感知机模型:

f = sign(wx+b)

几何解释:

wx+b = 0是一个超平面s,w是s的法向量,b是超平面的截距。

理想情况下,s把正负类分开。

感知机学习策略:

损失函数的选取是:误分类点到超平面s的总距离

空间中一个点x0到s的距离:

|wx0+b|/||w||

误分类点到s的距离:

-y0*(wx0+b)/||w||

不考虑系数||w||,那么损失函数是:

L(w,b) = -Σyi(wxi+b),其中(xi,yi)是误分类点

PLA的算法也就是解损失函数的最小值的方法是随机梯度下降法

损失函数L的梯度:

gradwL = -Σyixi

gradbL = -Σyi

1.选取初始参数w,b

2.从误分类点中随机选取一组:(xi,yi)

3.更新w = w + ηyixi

   b = b + ηyi

4.再挑选误分类点,再更新,直到没有误分类点

感知机:Perceptron Learning Algorithm的更多相关文章

  1. 【Perceptron Learning Algorithm】林轩田机器学习基石

    直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...

  2. Perceptron Learning Algorithm (PLA)

    Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign ...

  3. 线性模型(1):Perceptron Learning Algorithm (PLA)

    此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一) PLA算法是基本的binary Classification算法. 一个基本的问题是,对于银行,假设我知道 ...

  4. Perceptron Learning Algorithm(python实现)

    一.概论 对于给定的n维(两种类型)数据(训练集),找出一个n-1维的面,能够"尽可能"地按照数据类型分开.通过这个面,我们可以通过这个面对测试数据进行预测. 例如对于二维数据,要 ...

  5. Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结

    1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...

  6. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  7. 2. 感知机(Perceptron)基本形式和对偶形式实现

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  8. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks

    Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks S. Chen, C. F. N. Cow ...

  9. Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)

    题目:Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data 期刊:Journal of Pro ...

随机推荐

  1. 「考试」noip模拟9,11,13

    9.1 辣鸡 可以把答案分成 每个矩形内部连线 和 矩形之间的连线 两部分 前半部分即为\(2(w-1)(h-1)\),后半部分可以模拟求(就是讨论四种相邻的情况) 如果\(n^2\)选择暴力模拟是有 ...

  2. Android的Toolbar(含溢出菜单设置[弹出菜单的使用])的使用PopMenu的样式

    http://blog.csdn.net/yingtian648/article/details/52432438(转载) 1.在Toolbar.xml中设置弹出菜单的风格(app:popupThem ...

  3. argis android sdk配置备忘一下

    ArcGIS RuntimeAndroid SDK100.1.0 1.在线配置(只有两处) 在project工程中的gradle添加 maven { url 'https://esri.bintray ...

  4. 老猿Python博文汇总目录--按标题排序

    ☞ ░ 前往老猿Python博文目录 ░ 本部分为老猿CSDN全部博文的汇总(含转载部分),所有文章在此未进行归类,仅按文章标题排序,方便关键字查找.本部分内容将至少以周为单位定期更新,可能不包含发布 ...

  5. 如何使用 K8s 两大利器"审计"和"事件"帮你摆脱运维困境?

    概述 下面几个问题,相信广大 K8s 用户在日常集群运维中都曾经遇到过: 集群中的某个应用被删除了,谁干的? Apiserver 的负载突然变高,大量访问失败,集群中到底发生了什么? 集群节点 Not ...

  6. sails框架结合mocha

    sails框架(testing&model and orm): http://sailsjs.org/documentation/concepts/testing orm(对象关系映射): h ...

  7. tensorflow 小记——如何对张量做任意行求和,得到新tensor(一种方法:列表生成式)

    希望实现图片上的功能 import tensorflow as tfa = tf.range(10,dtype=float)b = aa = tf.reshape(a,[-1,1])a = tf.ti ...

  8. 【题解】「CF1182B」Plus from Picture

    这是一道超级水的模拟 + 简单搜索. 说说思路: 先找到中心点,就是自己和上下左右都为 * 的. 上下左右上的所有 * 都删掉,然后再看看有没有多余的 * 如果有输出 NO 否则输出 YES. 比如说 ...

  9. 2020 AC Saber夏季赛 游记

    看着 \(\text{Acwing}\) 成长的我,还是写一下游记吧(?). 刚刚中考完,手速本来就老年,更慢,算法每次写完都要调,而且还查不出错.. Day 1 初赛.紧张,因为中考四五个月没打了, ...

  10. HDU3686 Traffic Real Time Query System

    P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...