感知机是支持向量机SVM和神经网络的基础

f = sign(wx+b)

这样看起来好像是LR是差不多的,LR是用的sigmoid函数,PLA是用的sign符号函数,两者都是线性分类器,主要的差别在于策略不同,即损失函数不同。

LR是用的均方误差,PLA是用的误分类点到分离超平面的总距离。

感知机模型:

f = sign(wx+b)

几何解释:

wx+b = 0是一个超平面s,w是s的法向量,b是超平面的截距。

理想情况下,s把正负类分开。

感知机学习策略:

损失函数的选取是:误分类点到超平面s的总距离

空间中一个点x0到s的距离:

|wx0+b|/||w||

误分类点到s的距离:

-y0*(wx0+b)/||w||

不考虑系数||w||,那么损失函数是:

L(w,b) = -Σyi(wxi+b),其中(xi,yi)是误分类点

PLA的算法也就是解损失函数的最小值的方法是随机梯度下降法

损失函数L的梯度:

gradwL = -Σyixi

gradbL = -Σyi

1.选取初始参数w,b

2.从误分类点中随机选取一组:(xi,yi)

3.更新w = w + ηyixi

   b = b + ηyi

4.再挑选误分类点,再更新,直到没有误分类点

感知机:Perceptron Learning Algorithm的更多相关文章

  1. 【Perceptron Learning Algorithm】林轩田机器学习基石

    直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...

  2. Perceptron Learning Algorithm (PLA)

    Perceptron - 感知机,是一种二元线性分类器,它通过对特征向量的加权求和,并把这个”和”与事先设定的门槛值(threshold)做比较,高于门槛值的输出1,低于门槛值的输出-1.其中sign ...

  3. 线性模型(1):Perceptron Learning Algorithm (PLA)

    此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一) PLA算法是基本的binary Classification算法. 一个基本的问题是,对于银行,假设我知道 ...

  4. Perceptron Learning Algorithm(python实现)

    一.概论 对于给定的n维(两种类型)数据(训练集),找出一个n-1维的面,能够"尽可能"地按照数据类型分开.通过这个面,我们可以通过这个面对测试数据进行预测. 例如对于二维数据,要 ...

  5. Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结

    1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 ...

  6. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  7. 2. 感知机(Perceptron)基本形式和对偶形式实现

    1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...

  8. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks

    Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks S. Chen, C. F. N. Cow ...

  9. Journal of Proteome Research | Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data (分享人:翁海玉)

    题目:Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data 期刊:Journal of Pro ...

随机推荐

  1. 做IT需要掌握的电力基础知识

    电流 损耗 直流电的传输损耗大,所以不适合长距离传输, 交流电的传输损耗小,所以适合长距离传输, 使用 直流电电压稳定,无白躁声,故适於电子产品使用(例如电视机,收音机电脑等), 交流电要经过整流/开 ...

  2. Oracle11gR2 sqlplus中可以执行上键查询backspace删除

    1.1 sqlplus中可以执行上键查询backspace删除 1.1.1 上键查询 方法1: 安装源-导入key-安装rpm包-进入配置文件修改参数 rpm -ivh http://download ...

  3. 生成微博授权URL及回调地址

    1.创建apps/oauth模块进行oauth认证 '''2.1 在apps文件夹下新建应用: oauth''' cd syl/apps python ../manage.py startapp oa ...

  4. web服务器专题:tomcat基础及模块

    Web服务器专题:Tomcat(一)基础架构 针对java系的经典服务器,打算系统的整理一下Tomcat的机制和一些原理,以此记录. 插一则题外话,关于tomat这个名字的由来:Tomcat 名称的由 ...

  5. 从Paxos到Zookeeper 分布式一致性原理与实践读书心得

    一 本书作者介绍 此书名为从Paxos到ZooKeeper分布式一致性原理与实践,作者倪超,阿里巴巴集团高级研发工程师,国家认证系统分析师,毕业于杭州电子科技大学计算机系.2010年加入阿里巴巴中间件 ...

  6. 通过Dbeaver创建表格的时候,设置主键

    通过Dbeaver创建表格的时候,设置主键 Dbeaver介绍: ​ 这是一个开源的数据库连接工具,你需要安装jre才可以使用这个软件 在使用Dbeaver创建表的时候,会发现,不能直观地设置主键 这 ...

  7. 第四十章、PyQt显示部件:QGraphicsView图形视图和QGraphicsScene图形场景简介及应用案例

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一.概述 Designer中的Graphics V ...

  8. 第13.3节 图形界面开发tkinter

    一. 引言 老猿最开始是准备就tkinter单独开一个章节,但学了一段时间tkinter,最后放弃了,前一阵子还准备干脆不介绍相关的内容.主要原因有三个,一是tkinter没有界面设计的工具,所有界面 ...

  9. django 自定义存储上传文件的文件名

    一.需求: Django实现自定义文件名存储文件 使文件名看起来统一 避免收到中文文件导致传输.存储等问题 相同的文件也需要使用不同的文件名 二.实现思路: 思路: 生成14位随机字母加数字.后10位 ...

  10. csv 如何将txt文件转换成csv文件

    import csvdef convert_txt_to_csv(out_file_path, input_file_path, txt_sep): #定义输出路径,输入文件路径,txt的分隔符 wi ...