一、题目

  P2424 约数和

二、分析

  因为都是加法,那么肯定有的一个性质,即前缀和的思想,就是$$ { ans =\sum_{i=1}^y f(i)} - {\sum_{i=1}^x f(i)}  $$

  基于上面的性质,分析$ \sum_{i=1}^x f(i) $,因为每个数都是因子之和,那么$1 \to n $ 中一共也就 $n$个因子,其实就将问题转化到了求每个因子的贡献上面。

  考虑每个因子最终加  $ \lfloor \frac{n}{i} \rfloor $ 次,所以最终$$ { ans = \sum_{i=1}^y i \lfloor \frac{y}{i} \rfloor} - {\sum_{i=1}^x i \lfloor \frac{x}{i} \rfloor}  $$

  然后结合整除分块求解即可。

三、AC代码

 1 #include <bits/stdc++.h>
2
3 using namespace std;
4 typedef long long ll;
5
6 ll solve(ll n)
7 {
8 ll ans = 0;
9 ll L, R;
10 for(L = 1; L <= n; L = R + 1)
11 {
12 ll res = n/L;
13 if(res)
14 {
15 R = n/res;
16 }
17 else
18 R = n;
19 ans += res * (R - L + 1) * (R + L) / 2;
20 }
21 return ans;
22 }
23
24 int main()
25 {
26 //freopen("input.txt", "r", stdin);
27 ll x, y;
28 while(scanf("%lld%lld", &x, &y) != EOF)
29 {
30 printf("%lld\n", solve(y) - solve(x - 1));
31 }
32 return 0;
33 }

P2424 约数和 【整除分块】的更多相关文章

  1. 洛谷 - P2424 - 约数和 - 整除分块

    https://www.luogu.org/problemnew/show/P2424 记 \(\sigma(n)\) 为n的所有约数之和,例如 \(\sigma(6)=1+2+3+6=12\) . ...

  2. P2424 约数和 && 真丶除法分块

    P2424 约数和 题目背景 Smart最近沉迷于对约数的研究中. 题目描述 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f ...

  3. [笔记] 整除分块 & 异或性质

    整除分块 参考资料:整除分块_peng-ym OI生涯中的各种数论算法的证明 公式 求:\(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor\) 对于每个\(\lfloo ...

  4. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  5. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  6. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  7. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

  8. LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)

    题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...

  9. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

随机推荐

  1. codeforces 1039B Subway Pursuit【二分+随机】

    题目:戳这里 题意:一个点在[1,n]以内,我们可以进行4500次查询,每次查询之后,该点会向左或向右移动0~k步,请在4500次查询以内找到该点. 解题思路:一边二分,一边随机. 交互题似乎有好多是 ...

  2. JavaScript基本包装类介绍

    为了便于操作基本类型值,ECMAScript 提供了 3 个特殊的引用类型:Boolean.Number和 String.这些类型与其他引用类型相似,但同时也具有与各自的基本类型相应的特殊行为.实际上 ...

  3. java变量、数据类型、运算符

    关键字.保留字.标识符 关键字 Java关键字是对Java编译器有特殊含义的字符串,是编译器和程序员的一个约定,程序员利用关键字来告诉编译器其声明的变量类型.类.方法特性等信息 保留字 goto.co ...

  4. 解决: "E: 无法获得锁 /var/lib/dpkg/lock - open (11: 资源暂时不可用) ..."

    解决: "E: 无法获得锁 /var/lib/dpkg/lock - open (11: 资源暂时不可用) E: 无法锁定管理目录(/var/lib/dpkg/),是否有其他进程正占用它?& ...

  5. SASS CSS3 koala

    CSS with superpowers Sass: Syntactically Awesome Style Sheets http://sass-lang.com/ Sass is the most ...

  6. vue-cli-service & @vue/cli-service

    vue-cli-service & @vue/cli-service https://www.npmjs.com/package/@vue/cli-service https://yarnpk ...

  7. 英语能力考试 All In One

    英语能力考试 All In One 托福,雅思,托业 TOEIC 托业考试 Test of English for International Communication (TOEIC) 国际交流英语 ...

  8. How To Install Linux & Nginx & MySQL & PHP (LEMP) stack on Raspberry Pi 3,Raspberry Pi 3,LEMP,Nginx,PHP, LEMP (not LNMP)

    1.   How To Install Linux & Nginx & MySQL & PHP (LEMP) stack on Raspberry Pi 3         R ...

  9. ES6 Arrow Function All In One

    ES6 Arrow Function All In One this const log = console.log; const arrow_func = (args) => log(`arg ...

  10. Javascript 严格模式("use strict";)详细解解

    1 1 1 Javascript 严格模式("use strict";)详细解解 "use strict";定义JavaScript代码应该在"str ...