来了来了。


题目:

给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需要几次操作。k是不确定的,请输出1<=k<=n/2(向上取整)时的答案。

输入格式:

第一行一个正整数n

第二行n个正整数ai

输出格式:

一行 1<=k<=n/2 个数,第i个数代表k=i时的答案

数据范围:

1 ≤ n ≤ 5000

1 ≤ ai ≤ 100000

输入 #1复制

5
1 1 1 1 1
输出 #1复制

1 2 2 
输入 #2复制

3
1 2 3
输出 #2复制

0 2 

思路:

看到这道题的第一眼,我想到了一道题,2018noipD1T1铺设道路(链接:https://www.luogu.com.cn/problem/P5019),看起来十分相似,于是这道题想用朴素的贪心写,结果果然不对,两道题的区别还是很大,贪心的正确性无法保证,所以还是回来老老实实的写动归。

我们设定一个三维数组f,f[i][j][0]表示前i座山,修建j座房子,且第i座山没有建房子的代价,f[i][j][1]表示前i座山,修建j座房子,且第i座山建有房子的代价。

通过简单的模拟我们可以得到,(1)f[i][j][0]会从f[i-1][j][0](直接从前一个状态搬过来,前一座山和这座山都不建房子,抹油代价)和f[i-1][j][1](前一座山已经建了房子,那么就要使这座山的高度低于前一座山的高度,代价为max(0,a[i]-a[i-1]+1),有0是因为可能这座山的高度原来就低于前一座山的高度)转移过来,转移方程为:f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+max(0,a[i]-a[i-1]+1))   (2)f[i][j][1]的处理要比f[i][j][0]的处理相对复杂,在此我们明确一个观点,相邻的两座山不可能都建房子,并且在考虑这座山是否建房子的时候,可以只考虑这座山之前的状态,而不去考虑这座山之后的状态,这座山之后的状态我们可以在之后再处理,因此,f[i][j][1]可以从f[i-2][j-1][0]转移过来,因为第i-2座山没有建房子,所以第i-1座山的高度没有变化,代价为max(0,a[i]-a[i-1]+1)。f[i][j][1]同样可以从f[i-2][j-1][1]转移过来,因为第i-2座山已经建有房子,所以第i-1座山的高度可能会有变化,因此,总代价为:max(0,a[i-1]-(a[i-2],a[i])+1)(大家思考一下,为什么这里总代价不是:max(0,a[i-1]-min(0,a[i-1]-a[i-2]+1)-a[i]+1)) 答案(先思考再看答案):因为第i-1座山的高度一定比第i-2和i座山低,而这样做只能保证第i-1座山的高度低于第i-2座山的高度,无法保证第i-1座山的高度低于第i座山的高度,因此,我们也可以改成:max(max(0,a[i-1]-a[i]+1),max(0,a[i-1]-a[i-2]+1)) 贼长)

代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=5e3+,maxe=5e3+,INF=0x3f3f3f3f;
int n,m,a[maxn],f[maxn][maxn][],ans;
inline int read(){
int s=,t=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')t=-;ch=getchar();}
while(ch>=''&&ch<='')s=s*+ch-'',ch=getchar();
return s*t;
}//朴素快读
int main(){
freopen("a.in","r",stdin);
n=read();
for(int i=;i<=n;i++)a[i]=read();
a[]=INF;
memset(f,0x3f,sizeof(f));
f[][][]=f[][][]=f[][][]=;//初始化
for(int i=;i<=n;i++){
f[i][][]=f[i-][][];
for(int j=;j<=(i+)/;j++){//这里我测了一下,不管是用floor+1还是用ceil都不行,神奇
f[i][j][]=min(f[i-][j-][]+max(,a[i-]-a[i]+),f[i-][j-][]+max(max(,a[i-]-a[i]+),max(,a[i-]-a[i-]+)));
f[i][j][]=min(f[i-][j][],f[i-][j][]+max(,a[i]-a[i-]+));
}
//cout<<floor(i/2)+1<<" "<<(i+1)/2<<endl;
}
for(int i=;i<=(n+)/;i++)cout<<min(f[n][i][],f[n][i][])<<" ";
return ;
}

嘤嘤嘤,溜了

【线型DP】CF1012C Hills 小山坡的更多相关文章

  1. 【线型DP】洛谷P2066 机器分配

    [线型DP]洛谷P2066 机器分配 标签(空格分隔): 线型DP [题目] 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配 ...

  2. CF1012C Hills 题解【DP】

    思路还是比较简单的 dp 吧,但是就是想不出来-甚至类似的方程都被自己推翻了 Description Welcome to Innopolis city. Throughout the whole y ...

  3. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  4. 洛谷 CF1012C Hills (动态规划)

    题目大意:有n个山丘 , 可以在山丘上建房子 , 建房子的要求是 : 该山丘的左右山丘严格的矮于该山丘 (如果有的话),你有一架挖掘机,每单位时间可以给一个山丘挖一个单位的高度,问你想要建造 1,2, ...

  5. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

  6. 【线型DP】【LCS】UVA_10635 Prince and Princess

    嘤嘤嘤,我又来了,刚A完就写,这个沙雕题有丶恶心.                  ???时间4.11发现所有表情包都莫得了 题目: In an n×n chessboard, Prince and ...

  7. CF1012C Hills

    显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...

  8. 线性dp——cf1012C好题

    比较套路的dp题 /* dp[i][j][0|1]:前i座山盖了j座房子,第i座不盖|盖 dp[i][j][0]=min( dp[i-1][j][0] , dp[i-1][j][1]+max(0,a[ ...

  9. 洛谷 CF1012C Hills(动态规划)

    题目大意: 有几座山,如果一座山左右两边的山比它矮,那么可以在这个山上建房子,你有一台挖掘机,每天可以挖一座山一米,问你需要花多少代价可以分别盖1.2.3--座房子.(给出山的数量,以及每座山的高度) ...

随机推荐

  1. Spring之JdbcTemplate使用

    一:JdbcTemplate概述及入门 “Don‘t Reinvent the Wheel” , 这是一句很经典的话,出自Spring官方,翻译过来就是说 “不要重复发明轮子” .由此我们可以猜测,J ...

  2. Java基础(九)

    一.总述 多线程程序在较低的层次上扩展了多任务的概念:一个程序同时执行多个任务.通常,每一个任务称为一个线程,它是线程控制的简称.可以同时运行一个以上线程的程序称为多线程程序. 多进程与多线程的区别: ...

  3. 倍增法求LCA代码加详细注释

    #include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...

  4. OSI七层模型及各层作用

    物理层:建立.维护.断开物理连接 数据链路层:该层的作用包括了物理地址寻址,数据的成帧,流量控制,数据的检错,重发等.该层控制网络层与物理层之间的通信,解决的是所传输数据的准确性的问题.为了保证传输, ...

  5. test tt=0 <=>test(0)

    class test{ int mvalue; public: test(int i){ cout << "test(int i) =" << i < ...

  6. 0.大话Spring Cloud

    天天说Spring cloud ,那到底它是什么? 定义 它不是云计算解决方案 它是一种微服务开发框架 它是(快速构建分布式系统的通用模式的)工具集 它基于Spring boot 构建开发 它是云原生 ...

  7. 手写网页扫雷之js部分(vue)

    var vm = new Vue({ el:"#ui", data(){ return{ num:0, saoleiStyle:{ width: "0px", ...

  8. excel筛选重复项代码

    Sub test()'updateby Extendoffice 20151030    Dim xRng As Range    Dim xTxt As String    On Error Res ...

  9. 04.开发REST 接口

    使用Django开发REST 接口 我们以在Django框架中使用的图书英雄案例来写一套支持图书数据增删改查的REST API接口,来理解REST API的开发. 在此案例中,前后端均发送JSON格式 ...

  10. Thunk函数的使用

    Thunk函数的使用 编译器的求值策略通常分为传值调用以及传名调用,Thunk函数是应用于编译器的传名调用实现,往往是将参数放到一个临时函数之中,再将这个临时函数传入函数体,这个临时函数就叫做Thun ...