【线型DP】CF1012C Hills 小山坡
来了来了。
题目:
给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需要几次操作。k是不确定的,请输出1<=k<=n/2(向上取整)时的答案。
输入格式:
第一行一个正整数n
第二行n个正整数ai
输出格式:
一行 1<=k<=n/2 个数,第i个数代表k=i时的答案
数据范围:
1 ≤ n ≤ 5000
1 ≤ ai ≤ 100000
5
1 1 1 1 1
1 2 2
3
1 2 3
0 2
思路:
看到这道题的第一眼,我想到了一道题,2018noipD1T1铺设道路(链接:https://www.luogu.com.cn/problem/P5019),看起来十分相似,于是这道题想用朴素的贪心写,结果果然不对,两道题的区别还是很大,贪心的正确性无法保证,所以还是回来老老实实的写动归。
我们设定一个三维数组f,f[i][j][0]表示前i座山,修建j座房子,且第i座山没有建房子的代价,f[i][j][1]表示前i座山,修建j座房子,且第i座山建有房子的代价。
通过简单的模拟我们可以得到,(1)f[i][j][0]会从f[i-1][j][0](直接从前一个状态搬过来,前一座山和这座山都不建房子,抹油代价)和f[i-1][j][1](前一座山已经建了房子,那么就要使这座山的高度低于前一座山的高度,代价为max(0,a[i]-a[i-1]+1),有0是因为可能这座山的高度原来就低于前一座山的高度)转移过来,转移方程为:f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+max(0,a[i]-a[i-1]+1)) (2)f[i][j][1]的处理要比f[i][j][0]的处理相对复杂,在此我们明确一个观点,相邻的两座山不可能都建房子,并且在考虑这座山是否建房子的时候,可以只考虑这座山之前的状态,而不去考虑这座山之后的状态,这座山之后的状态我们可以在之后再处理,因此,f[i][j][1]可以从f[i-2][j-1][0]转移过来,因为第i-2座山没有建房子,所以第i-1座山的高度没有变化,代价为max(0,a[i]-a[i-1]+1)。f[i][j][1]同样可以从f[i-2][j-1][1]转移过来,因为第i-2座山已经建有房子,所以第i-1座山的高度可能会有变化,因此,总代价为:max(0,a[i-1]-(a[i-2],a[i])+1)(大家思考一下,为什么这里总代价不是:max(0,a[i-1]-min(0,a[i-1]-a[i-2]+1)-a[i]+1)) 答案(先思考再看答案):因为第i-1座山的高度一定比第i-2和i座山低,而这样做只能保证第i-1座山的高度低于第i-2座山的高度,无法保证第i-1座山的高度低于第i座山的高度,因此,我们也可以改成:max(max(0,a[i-1]-a[i]+1),max(0,a[i-1]-a[i-2]+1)) 贼长)
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=5e3+,maxe=5e3+,INF=0x3f3f3f3f;
int n,m,a[maxn],f[maxn][maxn][],ans;
inline int read(){
int s=,t=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')t=-;ch=getchar();}
while(ch>=''&&ch<='')s=s*+ch-'',ch=getchar();
return s*t;
}//朴素快读
int main(){
freopen("a.in","r",stdin);
n=read();
for(int i=;i<=n;i++)a[i]=read();
a[]=INF;
memset(f,0x3f,sizeof(f));
f[][][]=f[][][]=f[][][]=;//初始化
for(int i=;i<=n;i++){
f[i][][]=f[i-][][];
for(int j=;j<=(i+)/;j++){//这里我测了一下,不管是用floor+1还是用ceil都不行,神奇
f[i][j][]=min(f[i-][j-][]+max(,a[i-]-a[i]+),f[i-][j-][]+max(max(,a[i-]-a[i]+),max(,a[i-]-a[i-]+)));
f[i][j][]=min(f[i-][j][],f[i-][j][]+max(,a[i]-a[i-]+));
}
//cout<<floor(i/2)+1<<" "<<(i+1)/2<<endl;
}
for(int i=;i<=(n+)/;i++)cout<<min(f[n][i][],f[n][i][])<<" ";
return ;
}
嘤嘤嘤,溜了
【线型DP】CF1012C Hills 小山坡的更多相关文章
- 【线型DP】洛谷P2066 机器分配
[线型DP]洛谷P2066 机器分配 标签(空格分隔): 线型DP [题目] 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配 ...
- CF1012C Hills 题解【DP】
思路还是比较简单的 dp 吧,但是就是想不出来-甚至类似的方程都被自己推翻了 Description Welcome to Innopolis city. Throughout the whole y ...
- [bzoj3209][花神的数论题] (数位dp+费马小定理)
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- 洛谷 CF1012C Hills (动态规划)
题目大意:有n个山丘 , 可以在山丘上建房子 , 建房子的要求是 : 该山丘的左右山丘严格的矮于该山丘 (如果有的话),你有一架挖掘机,每单位时间可以给一个山丘挖一个单位的高度,问你想要建造 1,2, ...
- 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)
BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...
- 【线型DP】【LCS】UVA_10635 Prince and Princess
嘤嘤嘤,我又来了,刚A完就写,这个沙雕题有丶恶心. ???时间4.11发现所有表情包都莫得了 题目: In an n×n chessboard, Prince and ...
- CF1012C Hills
显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...
- 线性dp——cf1012C好题
比较套路的dp题 /* dp[i][j][0|1]:前i座山盖了j座房子,第i座不盖|盖 dp[i][j][0]=min( dp[i-1][j][0] , dp[i-1][j][1]+max(0,a[ ...
- 洛谷 CF1012C Hills(动态规划)
题目大意: 有几座山,如果一座山左右两边的山比它矮,那么可以在这个山上建房子,你有一台挖掘机,每天可以挖一座山一米,问你需要花多少代价可以分别盖1.2.3--座房子.(给出山的数量,以及每座山的高度) ...
随机推荐
- Spring之JdbcTemplate使用
一:JdbcTemplate概述及入门 “Don‘t Reinvent the Wheel” , 这是一句很经典的话,出自Spring官方,翻译过来就是说 “不要重复发明轮子” .由此我们可以猜测,J ...
- Java基础(九)
一.总述 多线程程序在较低的层次上扩展了多任务的概念:一个程序同时执行多个任务.通常,每一个任务称为一个线程,它是线程控制的简称.可以同时运行一个以上线程的程序称为多线程程序. 多进程与多线程的区别: ...
- 倍增法求LCA代码加详细注释
#include <iostream> #include <vector> #include <algorithm> #define MAXN 100 //2^MA ...
- OSI七层模型及各层作用
物理层:建立.维护.断开物理连接 数据链路层:该层的作用包括了物理地址寻址,数据的成帧,流量控制,数据的检错,重发等.该层控制网络层与物理层之间的通信,解决的是所传输数据的准确性的问题.为了保证传输, ...
- test tt=0 <=>test(0)
class test{ int mvalue; public: test(int i){ cout << "test(int i) =" << i < ...
- 0.大话Spring Cloud
天天说Spring cloud ,那到底它是什么? 定义 它不是云计算解决方案 它是一种微服务开发框架 它是(快速构建分布式系统的通用模式的)工具集 它基于Spring boot 构建开发 它是云原生 ...
- 手写网页扫雷之js部分(vue)
var vm = new Vue({ el:"#ui", data(){ return{ num:0, saoleiStyle:{ width: "0px", ...
- excel筛选重复项代码
Sub test()'updateby Extendoffice 20151030 Dim xRng As Range Dim xTxt As String On Error Res ...
- 04.开发REST 接口
使用Django开发REST 接口 我们以在Django框架中使用的图书英雄案例来写一套支持图书数据增删改查的REST API接口,来理解REST API的开发. 在此案例中,前后端均发送JSON格式 ...
- Thunk函数的使用
Thunk函数的使用 编译器的求值策略通常分为传值调用以及传名调用,Thunk函数是应用于编译器的传名调用实现,往往是将参数放到一个临时函数之中,再将这个临时函数传入函数体,这个临时函数就叫做Thun ...