来了来了。


题目:

给你n个数,你一次操作可以把某一个数-1(可以减为负数),你的目标是使任意的k个数严格小于它旁边的两个数(第一个数只用严格小于第二个数,第n个数只用严格小于第n-1个数),问最少需要几次操作。k是不确定的,请输出1<=k<=n/2(向上取整)时的答案。

输入格式:

第一行一个正整数n

第二行n个正整数ai

输出格式:

一行 1<=k<=n/2 个数,第i个数代表k=i时的答案

数据范围:

1 ≤ n ≤ 5000

1 ≤ ai ≤ 100000

输入 #1复制

5
1 1 1 1 1
输出 #1复制

1 2 2 
输入 #2复制

3
1 2 3
输出 #2复制

0 2 

思路:

看到这道题的第一眼,我想到了一道题,2018noipD1T1铺设道路(链接:https://www.luogu.com.cn/problem/P5019),看起来十分相似,于是这道题想用朴素的贪心写,结果果然不对,两道题的区别还是很大,贪心的正确性无法保证,所以还是回来老老实实的写动归。

我们设定一个三维数组f,f[i][j][0]表示前i座山,修建j座房子,且第i座山没有建房子的代价,f[i][j][1]表示前i座山,修建j座房子,且第i座山建有房子的代价。

通过简单的模拟我们可以得到,(1)f[i][j][0]会从f[i-1][j][0](直接从前一个状态搬过来,前一座山和这座山都不建房子,抹油代价)和f[i-1][j][1](前一座山已经建了房子,那么就要使这座山的高度低于前一座山的高度,代价为max(0,a[i]-a[i-1]+1),有0是因为可能这座山的高度原来就低于前一座山的高度)转移过来,转移方程为:f[i][j][0]=max(f[i-1][j][0],f[i-1][j][1]+max(0,a[i]-a[i-1]+1))   (2)f[i][j][1]的处理要比f[i][j][0]的处理相对复杂,在此我们明确一个观点,相邻的两座山不可能都建房子,并且在考虑这座山是否建房子的时候,可以只考虑这座山之前的状态,而不去考虑这座山之后的状态,这座山之后的状态我们可以在之后再处理,因此,f[i][j][1]可以从f[i-2][j-1][0]转移过来,因为第i-2座山没有建房子,所以第i-1座山的高度没有变化,代价为max(0,a[i]-a[i-1]+1)。f[i][j][1]同样可以从f[i-2][j-1][1]转移过来,因为第i-2座山已经建有房子,所以第i-1座山的高度可能会有变化,因此,总代价为:max(0,a[i-1]-(a[i-2],a[i])+1)(大家思考一下,为什么这里总代价不是:max(0,a[i-1]-min(0,a[i-1]-a[i-2]+1)-a[i]+1)) 答案(先思考再看答案):因为第i-1座山的高度一定比第i-2和i座山低,而这样做只能保证第i-1座山的高度低于第i-2座山的高度,无法保证第i-1座山的高度低于第i座山的高度,因此,我们也可以改成:max(max(0,a[i-1]-a[i]+1),max(0,a[i-1]-a[i-2]+1)) 贼长)

代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=5e3+,maxe=5e3+,INF=0x3f3f3f3f;
int n,m,a[maxn],f[maxn][maxn][],ans;
inline int read(){
int s=,t=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')t=-;ch=getchar();}
while(ch>=''&&ch<='')s=s*+ch-'',ch=getchar();
return s*t;
}//朴素快读
int main(){
freopen("a.in","r",stdin);
n=read();
for(int i=;i<=n;i++)a[i]=read();
a[]=INF;
memset(f,0x3f,sizeof(f));
f[][][]=f[][][]=f[][][]=;//初始化
for(int i=;i<=n;i++){
f[i][][]=f[i-][][];
for(int j=;j<=(i+)/;j++){//这里我测了一下,不管是用floor+1还是用ceil都不行,神奇
f[i][j][]=min(f[i-][j-][]+max(,a[i-]-a[i]+),f[i-][j-][]+max(max(,a[i-]-a[i]+),max(,a[i-]-a[i-]+)));
f[i][j][]=min(f[i-][j][],f[i-][j][]+max(,a[i]-a[i-]+));
}
//cout<<floor(i/2)+1<<" "<<(i+1)/2<<endl;
}
for(int i=;i<=(n+)/;i++)cout<<min(f[n][i][],f[n][i][])<<" ";
return ;
}

嘤嘤嘤,溜了

【线型DP】CF1012C Hills 小山坡的更多相关文章

  1. 【线型DP】洛谷P2066 机器分配

    [线型DP]洛谷P2066 机器分配 标签(空格分隔): 线型DP [题目] 题目描述 总公司拥有高效设备M台,准备分给下属的N个分公司.各分公司若获得这些设备,可以为国家提供一定的盈利.问:如何分配 ...

  2. CF1012C Hills 题解【DP】

    思路还是比较简单的 dp 吧,但是就是想不出来-甚至类似的方程都被自己推翻了 Description Welcome to Innopolis city. Throughout the whole y ...

  3. [bzoj3209][花神的数论题] (数位dp+费马小定理)

    Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...

  4. 洛谷 CF1012C Hills (动态规划)

    题目大意:有n个山丘 , 可以在山丘上建房子 , 建房子的要求是 : 该山丘的左右山丘严格的矮于该山丘 (如果有的话),你有一架挖掘机,每单位时间可以给一个山丘挖一个单位的高度,问你想要建造 1,2, ...

  5. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

  6. 【线型DP】【LCS】UVA_10635 Prince and Princess

    嘤嘤嘤,我又来了,刚A完就写,这个沙雕题有丶恶心.                  ???时间4.11发现所有表情包都莫得了 题目: In an n×n chessboard, Prince and ...

  7. CF1012C Hills

    显然的DP是,dp[i][j][val] val是1e6的 简化 发现,其实决策很有限,最优解的i-1的val选择有限 题解 这里的一个trick是,f[i][j][0]转移不考虑a[i]和a[i-1 ...

  8. 线性dp——cf1012C好题

    比较套路的dp题 /* dp[i][j][0|1]:前i座山盖了j座房子,第i座不盖|盖 dp[i][j][0]=min( dp[i-1][j][0] , dp[i-1][j][1]+max(0,a[ ...

  9. 洛谷 CF1012C Hills(动态规划)

    题目大意: 有几座山,如果一座山左右两边的山比它矮,那么可以在这个山上建房子,你有一台挖掘机,每天可以挖一座山一米,问你需要花多少代价可以分别盖1.2.3--座房子.(给出山的数量,以及每座山的高度) ...

随机推荐

  1. 机器学习——十大数据挖掘之一的决策树CART算法

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第23篇文章,我们今天分享的内容是十大数据挖掘算法之一的CART算法. CART算法全称是Classification ...

  2. FR嵌套报表(Nested Report)

    //主界面只是说明放置了哪些东西(3个ADOQuery不必放): //MasterSource.MasterField的设置如下: 1) Customer.Orders.Items 的 MasterS ...

  3. excel 如何制作带下拉框的动态折线图表

    首先我们需要有个类似下图产品销量的基础数据表. 首先将光标放入表格中任意位置,然后插入一个不带点标记的折线图,然后将折线的颜色设置为灰色. 第一次设置成灰色后,一定善用f4快捷键进行快速的折线颜色设置 ...

  4. sql片段提取引用

    sql片段 sql中可将重复的sql提取出来,使用时用include引用即可,最终达到sql重用的目的,如下: <!-- 传递pojo综合查询用户信息 --> <select id= ...

  5. wget介绍和命令总结

    参考资料: https://www.cnblogs.com/ftl1012/p/9265699.html https://www.cnblogs.com/lsdb/p/7171779.html cur ...

  6. 【Spring】Bean的LifeCycle(生命周期)

    菜瓜:水稻,上次说Bean的LifeCycle,还没讲完 水稻:啥?说人话? 菜瓜:spring,bean,生命周期 水稻:哦哦,下次直接说人话.说正事,先从BeanFactory.Applicati ...

  7. 基于node的前端项目编译时内存溢出问题

    解决方法: CALL_AND_RETRY_LAST Allocation failed - JavaScript heap out of memory JavaScript堆内存不足,这里说的 Jav ...

  8. 看了Java的Class的源码,我自闭了

    java源码之Class ​ 源码的重要性不言而喻,虽然枯燥,但是也有拍案叫绝.这是我的源码系列第二弹,后续还会一直更新,欢迎交流.String源码可以看我的Java源码之String,如有不足,希望 ...

  9. 02.Hamcrest和TestSuite介绍

    1.首先第一步需要导入对应的jar包 我们来看下面的一个例子 OK,在前面的一系列博客里面,我整理过了Assert类下面常用的断言方法,比如assertEquals等等,但是org.junit.Ass ...

  10. 底层剖析Python深浅拷贝

    底层剖析Python深浅拷贝 拷贝的用途 拷贝就是copy,目的在于复制出一份一模一样的数据.使用相同的算法对于产生的数据有多种截然不同的用途时就可以使用copy技术,将copy出的各种副本去做各种不 ...