Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布!


Summary
众所周知,化学突触传递是不可靠的过程,但是这种不可靠的函数仍然不清楚。在这里,我考虑这样一个假设,即大脑利用突触传递的随机性来进行学习,这类似于达尔文进化论中的基因突变。如果突触是“享乐主义的”,则可能发生这种情况,通过增加它们的囊泡释放或失败的概率来响应全局奖励信号,这取决于立即采取哪种动作。享乐主义突触通过计算对平均奖励梯度的随机近似来学习。它们与突触动态(例如短期促进和抑制)以及树突整合和动作电位生成的复杂性兼容。可以训练突触网络以通过奖励适当地执行所需的计算,如此处通过IF模型神经元的数值模拟所示。
Introduction
许多类型的学习可以被视为优化。例如,操作性条件可以被视为动物适应其动作以最大化奖励的过程。“实践使之完美”的格言是指反复提高复杂的动作技能,例如弹钢琴或打网球。人们普遍认为,学习至少部分基于大脑突触组织的可塑性。因此,似乎存在为优化神经回路函数而量身定制的突触可塑性类型。
这种突触可塑性可以采取什么具体形式?为了激发想像力,从进化中汲取灵感是很有帮助的,进化是生物学优化过程的最著名例子。进化的一个令人着迷的方面是,它需要不完美的基因复制。这种不可靠性可能在其他方面似乎是不可取的,但是随机突变和重组对于产生变异实际上是必不可少的,变异允许进化以寻找改良的基因型。
Results
Training a Multilayer Network
Release-Failure Antagonism
The Matching Law
Dynamic Synapses
Postsynaptic Voltage Dependence
Postsynaptic Locus of Plasticity
Temporal Antagonism
Discussion
Hedonistic synapses are just a mechanism
Learning in Spiking Neural Networks by Reinforcement of Stochastic Synaptic Transmission的更多相关文章
- Training spiking neural networks for reinforcement learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduc ...
- A review of learning in biologically plausible spiking neural networks
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spik ...
- 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...
- [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem
The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...
- 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...
- [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...
- Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...
随机推荐
- 呕心搜集总结的15个“swoole”常见问题(一)
一.升级Swoole版本 可以使用 pecl 进行安装和升级 pecl upgrade swoole 也可以直接从 github/gitee/pecl 下载一个新版本,重新安装编译. 更新 Swool ...
- [转]jquery如何判断checkbox(复选框)是否被选中,至少被选中一个
谁都知道 在html 如果一个复选框被选中 是 checked="checked". 但是我们如果用jquery alert($("#id").attr(&qu ...
- mapstruct 实体转换及List转换,@Mapper注解转换
本文参考 https://blog.csdn.net/u012373815/article/details/88367456 主要是为了自己使用方便查询. 这些都是我平时用到了,大家有什么好方法或者有 ...
- PHP serialize() 函数
serialize() 函数用于序列化对象或数组,并返回一个字符串.高佣联盟 www.cgewang.com serialize() 函数序列化对象后,可以很方便的将它传递给其他需要它的地方,且其类型 ...
- jmeter中使用jdbc参数化
以读取mysql数据库为例 1.下载一个mysql驱动包,最好去mysql官网下载 下载网址:https://dev.mysql.com/downloads/connector/j/ Select O ...
- MIME-TYPE 列表
Suffixes applicable Media type and subtype(s) .3dm x-world/x-3dmf .3dmf x-world/x-3dmf .a applicatio ...
- RDD和Dataframe相互转换
参考:https://www.cnblogs.com/starwater/p/6841807.html 在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使 ...
- Linux的VMWare中Centos7文件目录类命令
1.)ls命令简介 ls ---列出目前工作目录所含之文件及子目录 语法 ls [-alrtAFR] [name...] 参数 : -a 显示所有文件及目录 (ls内定将文件名或目录名称 ...
- jmeter如何设置全局变量
场景:性能测试或者接口测试,如果想跨线程引用(案例:A线程组里面的一个输出,是B线程组里面的一个输入,这个时候如果要引用),这个时候你就必须要设置全局变量;全链路压测也需要分不同场景,通常情况,一个场 ...
- ios签名app稳定不掉签技术详细教程详解
iOS签名是专门针对ios的APP内测的数字签名,是苹果面向开发者提出的一箱机制. 因为现在苹果APP下载渠道只有App Store,还可以加上一个内测用的testflight,也就是说,除了这两个官 ...