8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树
G. Raffles
题目连接:
http://www.codeforces.com/contest/626/problem/G
Description
Johnny is at a carnival which has n raffles. Raffle i has a prize with value pi. Each participant can put tickets in whichever raffles they choose (they may have more than one ticket in a single raffle). At the end of the carnival, one ticket is selected at random from each raffle, and the owner of the ticket wins the associated prize. A single person can win multiple prizes from different raffles.
However, county rules prevent any one participant from owning more than half the tickets in a single raffle, i.e. putting more tickets in the raffle than all the other participants combined. To help combat this (and possibly win some prizes), the organizers started by placing a single ticket in each raffle, which they will never remove.
Johnny bought t tickets and is wondering where to place them. Currently, there are a total of li tickets in the i-th raffle. He watches as other participants place tickets and modify their decisions and, at every moment in time, wants to know how much he can possibly earn. Find the maximum possible expected value of Johnny's winnings at each moment if he distributes his tickets optimally. Johnny may redistribute all of his tickets arbitrarily between each update, but he may not place more than t tickets total or have more tickets in a single raffle than all other participants combined.
Input
The first line contains two integers n, t, and q (1 ≤ n, t, q ≤ 200 000) — the number of raffles, the number of tickets Johnny has, and the total number of updates, respectively.
The second line contains n space-separated integers pi (1 ≤ pi ≤ 1000) — the value of the i-th prize.
The third line contains n space-separated integers li (1 ≤ li ≤ 1000) — the number of tickets initially in the i-th raffle.
The last q lines contain the descriptions of the updates. Each description contains two integers tk, rk (1 ≤ tk ≤ 2, 1 ≤ rk ≤ n) — the type of the update and the raffle number. An update of type 1 represents another participant adding a ticket to raffle rk. An update of type 2 represents another participant removing a ticket from raffle rk.
It is guaranteed that, after each update, each raffle has at least 1 ticket (not including Johnny's) in it.
Output
Print q lines, each containing a single real number — the maximum expected value of Johnny's winnings after the k-th update. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
Sample Input
2 1 3
4 5
1 2
1 1
1 2
2 1
Sample Output
1.666666667
1.333333333
2.000000000
Hint
题意
有n个奖池,每个奖池价值p[i],你有t张票
现在每个奖池里面已经有了y[i]张票,然后你可以向每个奖池里面投入x[i]张票,当然x[i]的和需要小于等于t
然后你可以获得p[i]*x[i]/(y[i]+x[i])元钱(其实题意是你有x[i]/(y[i]+x[i])的概率获得p[i]元),但是有规定,你最多获得p[i]/2元
问你怎么投资,可以获得最多的钱
有q次修改
修改有两个操作:
1.使得y[i]+1
2.使得y[i]-1
每次修改完后,输出答案。
题解:
简单思考一下,假设没有修改操作的话,我们可以用一个堆来维护,每一块钱投入进当前我能够赚取最多的奖池就好了。
修改操作也是一样的,我修改之后,我讨论一下我当前的状态,只要我的一块钱从一个地方移动到另外一个地方,能够赚钱的话,我就去移动就好了
现在我就用线段树去维护,我从一个地方失去一块钱,我亏多少,从一个地方投入一块钱,我赚多少
然后从亏最少的地方转移到最多的地方就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+6;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int x[maxn],y[maxn],p[maxn];
struct treenode
{
int L , R ;
double Up,Down,Max,Min,ans;
void updata()
{
ans=1.0*p[L]*min(1.0*x[L]/(x[L]+y[L]),0.5);
if(x[L]>=y[L])Up=0;
else
{
Up=1.0*p[L]*(x[L]+1.0)/(x[L]+y[L]+1.0);
Up-=1.0*p[L]*x[L]/(x[L]+y[L]);
}
if(x[L])
{
if(x[L]>y[L])Down=0;
else
{
Down=1.0*p[L]*x[L]/(x[L]+y[L]);
Down-=1.0*p[L]*(x[L]-1.0)/(x[L]-1.0+y[L]);
}
}
else
Down=1e18;
}
};
treenode tree[maxn*4];
inline void push_up(int o)
{
tree[o].ans=tree[o<<1].ans+tree[o<<1|1].ans;
tree[o].Up=max(tree[o<<1].Up,tree[o<<1|1].Up);
tree[o].Down=min(tree[o<<1].Down,tree[o<<1|1].Down);
if(tree[o<<1].Up>tree[o<<1|1].Up)
tree[o].Max=tree[o<<1].Max;
else
tree[o].Max=tree[o<<1|1].Max;
if(tree[o<<1].Down<tree[o<<1|1].Down)
tree[o].Min=tree[o<<1].Min;
else
tree[o].Min=tree[o<<1|1].Min;
}
inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R, tree[o].ans=0;
if(L==R)
tree[o].Min=tree[o].Max=L,tree[o].updata();
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
push_up(o);
}
}
inline void updata(int QL,int o)
{
int L = tree[o].L , R = tree[o].R;
if (L==R)
{
tree[o].updata();
}
else
{
int mid = (L+R)>>1;
if (QL <= mid) updata(QL,o*2);
else updata(QL,o*2+1);
push_up(o);
}
}
int main()
{
int n,t,q,mx,mi;
scanf("%d%d%d",&n,&t,&q);
for(int i=1;i<=n;i++)
p[i]=read();
for(int i=1;i<=n;i++)
y[i]=read();
build_tree(1,n,1);
while(t--)mx=tree[1].Max,x[mx]++,updata(mx,1);
while(q--)
{
int type,r;type=read(),r=read();
if(type==1)y[r]++;else y[r]--;
updata(r,1);
while(1)
{
int mx = tree[1].Max;
int mi = tree[1].Min;
//cout<<mx<<" "<<mi<<" "<<tree[1].Up<<" "<<tree[1].Down<<endl;
if(tree[1].Up<=tree[1].Down)break;
x[mx]++,x[mi]--;
updata(mx,1);
updata(mi,1);
}
printf("%.12f\n",tree[1].ans);
}
}
8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树的更多相关文章
- 8VC Venture Cup 2016 - Elimination Round
在家补补题 模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...
- 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力
D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...
- 8VC Venture Cup 2016 - Elimination Round B. Cards 瞎搞
B. Cards 题目连接: http://www.codeforces.com/contest/626/problem/B Description Catherine has a deck of n ...
- 8VC Venture Cup 2016 - Elimination Round (C. Block Towers)
题目链接:http://codeforces.com/contest/626/problem/C 题意就是给你n个分别拿着2的倍数积木的小朋友和m个分别拿着3的倍数积木的小朋友,每个小朋友拿着积木的数 ...
- codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre
C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...
- 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题
F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...
- 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp
F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...
- 8VC Venture Cup 2016 - Elimination Round E. Simple Skewness 暴力+二分
E. Simple Skewness 题目连接: http://www.codeforces.com/contest/626/problem/E Description Define the simp ...
- 8VC Venture Cup 2016 - Elimination Round C. Block Towers 二分
C. Block Towers 题目连接: http://www.codeforces.com/contest/626/problem/C Description Students in a clas ...
随机推荐
- ew做socks5代理
这个工具和之前讲过的xxoo类似.链接:https://www.cnblogs.com/nul1/p/8883271.html https://zhuanlan.zhihu.com/p/3282215 ...
- Vue组件-组件的事件
自定义事件 通过prop属性,父组件可以向子组件传递数据,而子组件的自定义事件就是用来将内部的数据报告给父组件的. <div id="app3"> <my-com ...
- 檢查 cpu 的全部 gpio 狀態及設定
$ adb root # cat /sys/kernel/debug/gpio
- linux内核启动分析(2)
-----以下内容为从网络上整理所得------ 主要介绍kernel_init线程(函数),这个线程在rest_init函数中被创建,kernel_init函数将完成设备驱动程序的初始化,并调用in ...
- api文档工具
平台选型 Apidoc 文档参考:http://apidocjs.com 优点 文档齐全,操作简单,ui清晰,代码注解查询性强,语言支持多元化, ...
- CentOS 7下安装php-redis扩展及简单使用
前言: 在本篇文章中,我将给大家介绍如何在CentOS7上安装PHP-Redis扩展以及一些简单的实用,关于如何在Centos上安装redis的,可以参考 Redis在CentOS 7上的安装部署 ...
- leetcode 之Reverse Linked List II(15)
这题用需要非常细心,用头插法移动需要考虑先移动哪个,只需三个指针即可. ListNode *reverseList(ListNode *head, int m, int n) { ListNode d ...
- virtualenv--创建虚拟环境
一.virtualenv 优点 1.使用不同应用开发环境独立 2.环境升级不影响其他应用,也不会影响全局的python 环境二.安装 pip install virtualenv 三.使用virtua ...
- 云联云通讯报错:应用与模板id不匹配,解决方法
<statusMsg>应用与模板id不匹配</statusMsg> 这种一般是后端服务器上配置的APP ID和模板ID所属的APP不一致造成的 找到发送模板短信的方法,修改ap ...
- AC日记——Sagheer and Nubian Market codeforces 812c
C - Sagheer and Nubian Market 思路: 二分: 代码: #include <bits/stdc++.h> using namespace std; #defin ...