8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树
G. Raffles
题目连接:
http://www.codeforces.com/contest/626/problem/G
Description
Johnny is at a carnival which has n raffles. Raffle i has a prize with value pi. Each participant can put tickets in whichever raffles they choose (they may have more than one ticket in a single raffle). At the end of the carnival, one ticket is selected at random from each raffle, and the owner of the ticket wins the associated prize. A single person can win multiple prizes from different raffles.
However, county rules prevent any one participant from owning more than half the tickets in a single raffle, i.e. putting more tickets in the raffle than all the other participants combined. To help combat this (and possibly win some prizes), the organizers started by placing a single ticket in each raffle, which they will never remove.
Johnny bought t tickets and is wondering where to place them. Currently, there are a total of li tickets in the i-th raffle. He watches as other participants place tickets and modify their decisions and, at every moment in time, wants to know how much he can possibly earn. Find the maximum possible expected value of Johnny's winnings at each moment if he distributes his tickets optimally. Johnny may redistribute all of his tickets arbitrarily between each update, but he may not place more than t tickets total or have more tickets in a single raffle than all other participants combined.
Input
The first line contains two integers n, t, and q (1 ≤ n, t, q ≤ 200 000) — the number of raffles, the number of tickets Johnny has, and the total number of updates, respectively.
The second line contains n space-separated integers pi (1 ≤ pi ≤ 1000) — the value of the i-th prize.
The third line contains n space-separated integers li (1 ≤ li ≤ 1000) — the number of tickets initially in the i-th raffle.
The last q lines contain the descriptions of the updates. Each description contains two integers tk, rk (1 ≤ tk ≤ 2, 1 ≤ rk ≤ n) — the type of the update and the raffle number. An update of type 1 represents another participant adding a ticket to raffle rk. An update of type 2 represents another participant removing a ticket from raffle rk.
It is guaranteed that, after each update, each raffle has at least 1 ticket (not including Johnny's) in it.
Output
Print q lines, each containing a single real number — the maximum expected value of Johnny's winnings after the k-th update. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .
Sample Input
2 1 3
4 5
1 2
1 1
1 2
2 1
Sample Output
1.666666667
1.333333333
2.000000000
Hint
题意
有n个奖池,每个奖池价值p[i],你有t张票
现在每个奖池里面已经有了y[i]张票,然后你可以向每个奖池里面投入x[i]张票,当然x[i]的和需要小于等于t
然后你可以获得p[i]*x[i]/(y[i]+x[i])元钱(其实题意是你有x[i]/(y[i]+x[i])的概率获得p[i]元),但是有规定,你最多获得p[i]/2元
问你怎么投资,可以获得最多的钱
有q次修改
修改有两个操作:
1.使得y[i]+1
2.使得y[i]-1
每次修改完后,输出答案。
题解:
简单思考一下,假设没有修改操作的话,我们可以用一个堆来维护,每一块钱投入进当前我能够赚取最多的奖池就好了。
修改操作也是一样的,我修改之后,我讨论一下我当前的状态,只要我的一块钱从一个地方移动到另外一个地方,能够赚钱的话,我就去移动就好了
现在我就用线段树去维护,我从一个地方失去一块钱,我亏多少,从一个地方投入一块钱,我赚多少
然后从亏最少的地方转移到最多的地方就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+6;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int x[maxn],y[maxn],p[maxn];
struct treenode
{
int L , R ;
double Up,Down,Max,Min,ans;
void updata()
{
ans=1.0*p[L]*min(1.0*x[L]/(x[L]+y[L]),0.5);
if(x[L]>=y[L])Up=0;
else
{
Up=1.0*p[L]*(x[L]+1.0)/(x[L]+y[L]+1.0);
Up-=1.0*p[L]*x[L]/(x[L]+y[L]);
}
if(x[L])
{
if(x[L]>y[L])Down=0;
else
{
Down=1.0*p[L]*x[L]/(x[L]+y[L]);
Down-=1.0*p[L]*(x[L]-1.0)/(x[L]-1.0+y[L]);
}
}
else
Down=1e18;
}
};
treenode tree[maxn*4];
inline void push_up(int o)
{
tree[o].ans=tree[o<<1].ans+tree[o<<1|1].ans;
tree[o].Up=max(tree[o<<1].Up,tree[o<<1|1].Up);
tree[o].Down=min(tree[o<<1].Down,tree[o<<1|1].Down);
if(tree[o<<1].Up>tree[o<<1|1].Up)
tree[o].Max=tree[o<<1].Max;
else
tree[o].Max=tree[o<<1|1].Max;
if(tree[o<<1].Down<tree[o<<1|1].Down)
tree[o].Min=tree[o<<1].Min;
else
tree[o].Min=tree[o<<1|1].Min;
}
inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R, tree[o].ans=0;
if(L==R)
tree[o].Min=tree[o].Max=L,tree[o].updata();
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
push_up(o);
}
}
inline void updata(int QL,int o)
{
int L = tree[o].L , R = tree[o].R;
if (L==R)
{
tree[o].updata();
}
else
{
int mid = (L+R)>>1;
if (QL <= mid) updata(QL,o*2);
else updata(QL,o*2+1);
push_up(o);
}
}
int main()
{
int n,t,q,mx,mi;
scanf("%d%d%d",&n,&t,&q);
for(int i=1;i<=n;i++)
p[i]=read();
for(int i=1;i<=n;i++)
y[i]=read();
build_tree(1,n,1);
while(t--)mx=tree[1].Max,x[mx]++,updata(mx,1);
while(q--)
{
int type,r;type=read(),r=read();
if(type==1)y[r]++;else y[r]--;
updata(r,1);
while(1)
{
int mx = tree[1].Max;
int mi = tree[1].Min;
//cout<<mx<<" "<<mi<<" "<<tree[1].Up<<" "<<tree[1].Down<<endl;
if(tree[1].Up<=tree[1].Down)break;
x[mx]++,x[mi]--;
updata(mx,1);
updata(mi,1);
}
printf("%.12f\n",tree[1].ans);
}
}
8VC Venture Cup 2016 - Elimination Round G. Raffles 线段树的更多相关文章
- 8VC Venture Cup 2016 - Elimination Round
在家补补题 模拟 A - Robot Sequence #include <bits/stdc++.h> char str[202]; void move(int &x, in ...
- 8VC Venture Cup 2016 - Elimination Round D. Jerry's Protest 暴力
D. Jerry's Protest 题目连接: http://www.codeforces.com/contest/626/problem/D Description Andrew and Jerr ...
- 8VC Venture Cup 2016 - Elimination Round B. Cards 瞎搞
B. Cards 题目连接: http://www.codeforces.com/contest/626/problem/B Description Catherine has a deck of n ...
- 8VC Venture Cup 2016 - Elimination Round (C. Block Towers)
题目链接:http://codeforces.com/contest/626/problem/C 题意就是给你n个分别拿着2的倍数积木的小朋友和m个分别拿着3的倍数积木的小朋友,每个小朋友拿着积木的数 ...
- codeforces 8VC Venture Cup 2016 - Elimination Round C. Lieges of Legendre
C. Lieges of Legendre 题意:给n,m表示有n个为2的倍数,m个为3的倍数:问这n+m个数不重复时的最大值 最小为多少? 数据:(0 ≤ n, m ≤ 1 000 000, n + ...
- 8VC Venture Cup 2016 - Elimination Round F - Group Projects dp好题
F - Group Projects 题目大意:给你n个物品, 每个物品有个权值ai, 把它们分成若干组, 总消耗为每组里的最大值减最小值之和. 问你一共有多少种分组方法. 思路:感觉刚看到的时候的想 ...
- 8VC Venture Cup 2016 - Elimination Round F. Group Projects dp
F. Group Projects 题目连接: http://www.codeforces.com/contest/626/problem/F Description There are n stud ...
- 8VC Venture Cup 2016 - Elimination Round E. Simple Skewness 暴力+二分
E. Simple Skewness 题目连接: http://www.codeforces.com/contest/626/problem/E Description Define the simp ...
- 8VC Venture Cup 2016 - Elimination Round C. Block Towers 二分
C. Block Towers 题目连接: http://www.codeforces.com/contest/626/problem/C Description Students in a clas ...
随机推荐
- Django rest framework 权限操作(源码分析)
知识回顾http://www.cnblogs.com/ctztake/p/8419059.html 这一篇是基于上一篇写的,上一篇谢了认证的具体流程,看懂了上一篇这一篇才能看懂, 当用户访问是 首先执 ...
- caffe Python API 之激活函数ReLU
import sys import os sys.path.append("/projects/caffe-ssd/python") import caffe net = caff ...
- canvas写的地铁地图
更新: 18-9-21:填了个坑,更新了canvas绘制过程. 根据的是百度提供的坐标,canvas的坐标是大的坐标在后面,所以跟实际生活方向相反. 所以canvas里的北方在下方,实际生活中北方在上 ...
- HA集群
//硬件准备: .两个机器,相同系统 .网卡ip为:aming 192.168.11.24 aming1 192.168.11.23 //实验准备: . hostname : aming , amin ...
- Redis 基础使用(1)
redis 数据库的使用场景介绍 redis 是 NoSQL 数据库中的一种,特别适合解决一些使用传统关系数据库难以解决的问题,redis 作为内存数据库,如果在不合适的场合,对内存的消耗是很大的,甚 ...
- vue 文件引入
直接 <script> 引入 直接下载并用 <script> 标签引入,Vue 会被注册为一个全局变量.重要提示:在开发时请用开发版本,遇到常见错误它会给出友好的警告. 开发环 ...
- iframe自适应高度的方法
不带边框的iframe因为能和网页无缝的结合从而不刷新新页面的情况下实现更新页面部分的数据成为可能,可是iframe却不像层那样可以收缩自如,iframe高度需要动态的调整需要JS来配合使用,只能通过 ...
- 对于mysql加索引,删除索引,添加列,删除列,修改列顺序的最佳办法测试
1.首先进行数据训的XltraBackup备份,有备无患,切记切记! 2.mysql -uroot -pD******** -- 导出csv文件 use dsideal_db; MariaDB [ds ...
- CSS 绝对居中方案
.Absolute-Center { margin: auto; position: absolute; top:;;;; }
- 基础平台为第三方应用接入提供oauth2认证接口
oauth2开放认证协议原理及案例分析 http://blog.csdn.net/volcan1987/article/details/7287605 谈谈基于OAuth 2.0的第三方认证 [上篇] ...