https://www.lydsy.com/JudgeOnline/problem.php?id=4584

https://www.luogu.org/problemnew/show/P3643

http://uoj.ac/problem/204

在首尔城中,汉江横贯东西。在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到。每个学校都拥有若干艘划艇。同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同。颜色相同的划艇被认为是一样的。每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加。如果编号为的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在Ai至Bi之间任意选择(Ai<=Bi)。
 
值得注意的是,编号为i的学校如果选择派出划艇参加庆典,那么它派出的划艇数量必须大于任意一所编号小于它的学校派出的划艇数量。
 
输入所有学校的Ai、Bi的值,求出参加庆典的划艇有多少种可能的情况,必须有至少一艘划艇参加庆典。两种情况不同当且仅当有参加庆典的某种颜色的划艇数量不同

dp神题,方程很难想……

(一瞬间我以为我已经傻到无可救药了直到我看了题解发现的确很难很神……)

参考1:https://www.luogu.org/blog/bestFy0731/solution-p3643

参考2:https://blog.csdn.net/wxh010910/article/details/54177511

参考3:http://45.76.49.80:8000/f/7bd0386ed1b24b8bb390/

看完这三个人还没看懂的话那接下来看我的理解吧。

不难想到对a和b离散化,并且令f[i][j]表示前i个学校,第i个学校必须取且第i个学校的划艇数量在j段区间内。

然后就有一个问题了,这样的话肯定会有几个学校的划艇数量区间重合,这时如何统计个数。

那么根据参考2的思路,考虑另一个问题:给m个长度为len的区间,选k个区间的方案数个数。

显然地为C(m,k)*C(len,k)。

对1~m的k求和即为sigma(C(m,m-k)*C(len,k))=C(m+len,m)。

现在我们就能求出当有m个学校在同一个数量段时的方案数了。

根据参考3,我们可以列出以下的式子:

令k+1~i中可以取j段的划艇数量的学校个数为m,且k+1~i的学校要么取0要么取j段,则:

f[i][j]=sigma(f[k][l]*C(m+len[j],m))(k<i,l<j)

(PS:k+1~i的学校取别的段(比如x)的情况早就被f[i][x]考虑过了。)

但是特殊的,当m=0时,C(m+len[j],m)=len[j]。

完后前缀和优化即可。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=1e9+;
const int N=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int n,m,a[N],b[N],c[N*];
int s[N],inv[N],C[N];
inline void LSH(){
sort(c+,c+m+);
m=unique(c+,c+m+)-c-;
for(int i=;i<=n;i++){
a[i]=lower_bound(c+,c+m+,a[i])-c;
b[i]=lower_bound(c+,c+m+,b[i]+)-c;
}
}
inline void init(){
inv[]=;
for(int i=;i<=n;i++)inv[i]=(ll)(p-p/i)*inv[p%i]%p;
}
int main(){
n=read();init();
for(int i=;i<=n;i++){
a[i]=read(),b[i]=read();
c[++m]=a[i];c[++m]=b[i]+;
}
LSH();
s[]=;C[]=;
for(int i=;i<m;i++){
int len=c[i+]-c[i];
for(int j=;j<=n;j++)C[j]=(ll)C[j-]*(len+j-)%p*inv[j]%p;
for(int j=n;j>=;j--){
if(a[j]<=i&&i+<=b[j]){
int f=,mul=len,cnt=;
for(int k=j-;k>=;k--){
(f+=(ll)s[k]*mul%p)%=p;
if(a[k]<=i&&i+<=b[k])mul=C[++cnt];
}
(s[j]+=f)%=p;
}
}
}
int ans=;
for(int i=;i<=n;i++)(ans+=s[i])%=p;
printf("%d\n",ans);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4584 & 洛谷3643 & UOJ204:[APIO2016]划艇——题解的更多相关文章

  1. 洛谷P1783 海滩防御 分析+题解代码

    洛谷P1783 海滩防御 分析+题解代码 题目描述: WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和 ...

  2. 洛谷P4047 [JSOI2010]部落划分题解

    洛谷P4047 [JSOI2010]部落划分题解 题目描述 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落 ...

  3. 洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈)

    洛谷P1155 双栈排序题解(图论模型转换+二分图染色+栈) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1311990 原题地址:洛谷P1155 双栈排序 ...

  4. 洛谷10月月赛II题解

    [咻咻咻] (https://www.luogu.org/contestnew/show/11616) 令人窒息的洛谷月赛,即将参加NOIp的我竟然只会一道题(也可以说一道也不会),最终145的我只能 ...

  5. [洛谷P1823]音乐会的等待 题解(单调栈)

    [洛谷P1823]音乐会的等待 Description N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没 ...

  6. BZOJ2527 & 洛谷3527:[Poi2011]Meteors——题解

    +++++++++++++++++++++++++++++++++++++++++++ +本文作者:luyouqi233. + +欢迎访问我的博客:http://www.cnblogs.com/luy ...

  7. 洛谷 p1516 青蛙的约会 题解

    dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...

  8. 洛谷p2370yyy2015c01的U盘题解

    没什么特殊的想法 就是看自己很久没有更新关于题解类的文章了而已 (其实这是我好久之前做的, 只是把它从洛谷博客搬到了这里而已) 题目 首先分析题目要二分 他长成这个亚子太二分了 所以就要二分 最好是先 ...

  9. 2019.06.17课件:[洛谷P1310]表达式的值 题解

    P1310 表达式的值 题目描述 给你一个带括号的布尔表达式,其中+表示或操作|,*表示与操作&,先算*再算+.但是待操作的数字(布尔值)不输入. 求能使最终整个式子的值为0的方案数. 题外话 ...

随机推荐

  1. iOS应用App Store发布流程

    iOS应用App Store发布流程 要发布iOS应用到App Store首先得有一个开发者账号,且不能是企业版(企业版只能部署inhouse,不能部署到App Store). 应用发布到App St ...

  2. Machine Learning Basic Knowledge

    常用的数据挖掘&机器学习知识(点) Basis(基础): MSE(MeanSquare Error 均方误差),LMS(Least MeanSquare 最小均方),LSM(Least Squ ...

  3. Richardson成熟度模型

    Richardson Maturity Model(RMM) 迈向REST的辉煌 一个模型(由Leonard Richardson开发)将REST方法的主要元素分解为三个步骤.这些引入资源,http动 ...

  4. 使用keytool工具产生带根CA和二级CA的用户证书

    使用keytool工具产生带根CA和二级CA的用户证书 1 生成根CA 1.1 生成根CA证书   根CA实际是一张自签CA,自签CA的使用者和颁发者都是它自己.使用下面的命令生成根证书,如果没有指定 ...

  5. vuecli结合eslint静态检查

    vuecli结合eslint静态检查 搭建vue项目开发可能选择vue-cli项目脚手架快速创建vue项目.(https://github.com/vuejs/vue-cli) 安装vue-cli n ...

  6. Linux命令应用大词典-第18章 磁盘分区

    18.1 fdisk:分区表管理 18.2 parted:分区维护程序 18.3 cfdisk:基于磁盘进行分区操作 18.4 partx:告诉内核关于磁盘上分区的号码 18.5 sfdisk:用于L ...

  7. TPO-10 C2 Return a literature book

    TPO-10 C2 Return a literature book 第 1 段 1.Listen to a conversation between a student and an employe ...

  8. 【转】一款已上市MMO手游地图同步方案总结

    转自游戏开发主席 1. 客户端地图格子的相关知识 在2.5D的MMO游戏里,角色是通过3D的方式渲染,2D的地图是通过2D的方式显示,所以在客户端一般会有三个坐标系: a) 3D坐标系:所有需要3D渲 ...

  9. C复合文字

    C99之前,可以传递数组,但是没有所谓的数组常量可供传递,于是新增了复合文字. 普通数组声明方法: int d[2]={10,20}; 复合文字声明: 与数组名相同,常量同时代表元素的地址. (int ...

  10. Java静态方法,静态变量,初始化顺序

    1. 静态方法: 成员变量分为实例变量和静态变量.其中实例变量属于某一个具体的实例,必须在类实例化后才真正存在,不同的对象拥有不同的实例变量.而静态变量被该类所有的对象公有(相当于全局变量),不需要实 ...