• 环境

Anaconda3 Python 3.6, Window 64bit

  • 目的

利用 jieba 进行分词,关键词提取

利用gensim下面的corpora,models,similarities 进行语料库建立,模型tfidf算法,稀疏矩阵相似度分析

  • 代码
# -*- coding: utf-8 -*-

import jieba
from gensim import corpora, models, similarities
from collections import defaultdict # 定义文件目录
work_dir = "D:/workspace/PythonSdy/data"
f1 = work_dir + "/t1.txt"
f2 = work_dir + "/t2.txt"
# 读取文件内容
c1 = open(f1, encoding='utf-8').read()
c2 = open(f2, encoding='utf-8').read()
# jieba 进行分词
data1 = jieba.cut(c1)
data2 = jieba.cut(c2) data11 = ""
# 获取分词内容
for i in data1:
data11 += i + " "
data21 = ""
# 获取分词内容
for i in data2:
data21 += i + " " doc1 = [data11, data21]
# print(doc1) t1 = [[word for word in doc.split()]
for doc in doc1]
# print(t1) # # frequence频率
freq = defaultdict(int)
for i in t1:
for j in i:
freq[j] += 1
# print(freq) # 限制词频
t2 = [[token for token in k if freq[j] >= 3]
for k in t1]
print(t2) # corpora语料库建立字典
dic1 = corpora.Dictionary(t2)
dic1.save(work_dir + "/yuliaoku.txt") # 对比文件
f3 = work_dir + "/t3.txt"
c3 = open(f3, encoding='utf-8').read()
# jieba 进行分词
data3 = jieba.cut(c3)
data31 = ""
for i in data3:
data31 += i + " "
new_doc = data31
print(new_doc) # doc2bow把文件变成一个稀疏向量
new_vec = dic1.doc2bow(new_doc.split())
# 对字典进行doc2bow处理,得到新语料库
new_corpor = [dic1.doc2bow(t3) for t3 in t2]
tfidf = models.TfidfModel(new_corpor) # 特征数
featurenum = len(dic1.token2id.keys()) # similarities 相似之处
# SparseMatrixSimilarity 稀疏矩阵相似度
idx = similarities.SparseMatrixSimilarity(tfidf[new_corpor], num_features=featurenum)
sims = idx[tfidf[new_vec]]
print(sims)
  • 结果展示

从结果可以得出:被对比的文件3 和文件2内容更相近。

Python 文本相似度分析的更多相关文章

  1. 文本离散表示(三):TF-IDF结合n-gram进行关键词提取和文本相似度分析

    这是文本离散表示的第二篇实战文章,要做的是运用TF-IDF算法结合n-gram,求几篇文档的TF-IDF矩阵,然后提取出各篇文档的关键词,并计算各篇文档之间的余弦距离,分析其相似度. TF-IDF与n ...

  2. 文本相似度分析(基于jieba和gensim)

    基础概念 本文在进行文本相似度分析过程分为以下几个部分进行, 文本分词 语料库制作 算法训练 结果预测 分析过程主要用两个包来实现jieba,gensim jieba:主要实现分词过程 gensim: ...

  3. 【Pyhton 数据分析】通过gensim进行文本相似度分析

    环境描述 Python环境:Python 3.6.1 系统版本:windows7 64bit 文件描述 一共有三个文件,分别是:file_01.txt.file_02.txt.file_03.txt ...

  4. python 文本相似度计算

    参考:python文本相似度计算 原始语料格式:一个文件,一篇文章. #!/usr/bin/env python # -*- coding: UTF-8 -*- import jieba from g ...

  5. python 用gensim进行文本相似度分析

    http://blog.csdn.net/chencheng126/article/details/50070021 参考于这个博主的博文. 原理 1.文本相似度计算的需求始于搜索引擎. 搜索引擎需要 ...

  6. 基于python语言使用余弦相似性算法进行文本相似度分析

    编写此脚本的目的: 本人从事软件测试工作,近两年发现项目成员总会提出一些内容相似的问题,导致开发抱怨.一开始想搜索一下是否有此类工具能支持查重的工作,但并没找到,因此写了这个工具.通过从纸上谈兵到着手 ...

  7. TF-IDF 文本相似度分析

    前阵子做了一些IT opreation analysis的research,从产线上取了一些J2EE server运行状态的数据(CPU,Menory...),打算通过训练JVM的数据来建立分类模型, ...

  8. 【NLP】Python实例:基于文本相似度对申报项目进行查重设计

    Python实例:申报项目查重系统设计与实现 作者:白宁超 2017年5月18日17:51:37 摘要:关于查重系统很多人并不陌生,无论本科还是硕博毕业都不可避免涉及论文查重问题,这也对学术不正之风起 ...

  9. LSTM 句子相似度分析

    使用句子中出现单词的Vector加权平均进行文本相似度分析虽然简单,但也有比较明显的缺点:没有考虑词序且词向量区别不明确.如下面两个句子: "北京的首都是中国"与"中国的 ...

随机推荐

  1. 推流协议 支持RTMP协议推流

    Stream Type Stream play domain nameStreaming Domain Name   播流 推流  推流协议 支持RTMP协议推流

  2. 接口测试工具 — jmeter(数据库操作)

    1.导入jdbc jar包 2.配置MySQL连接 3.执行sql语句

  3. git "Could not read from remote repository.Please make&n

    git "Could not read from remote repository.Please make sure you have the correct access rights. ...

  4. 洛谷 P1641 [SCOI2010]生成字符串

    洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...

  5. poco库 RSA加解密

    #include "poco/Crypto/Cipher.h"#include "poco/Crypto/CipherFactory.h"#include &q ...

  6. Django-admin列表展示上传图片

    1.在models.py文件中创建表ImageField类型字段 class user(models.Model): img = models.ImageField(upload_to='static ...

  7. 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  8. Python3.6写socket程序

    Python进行Socket程序编写使用的主要模块就是 socket 模块,在这个模块中可以找到 socket()函数,该函数用于创建套接字对象.套接字也有自己的方法集,这些方法可以实现基于套接字的网 ...

  9. Python(常用模块)

    模块 模块 本质上就是一个.py文件 内置模块(解释器层面) 第三方模块(Python lib文件) 自定义模块(当前路径) 模块调用,包的概念 在计算机程序的开发过程中,随着程序代码越写越多,在一个 ...

  10. C#基础--应用程序域(Appdomain)

    AppDomain理解 为了保证代码的键壮性CLR希望不同服务功能的代码之间相互隔离,这种隔离可以通过创建多个进程来实现,但操作系统中创建进程是即耗时又耗费资源的一件事,所以在CLR中引入了AppDo ...