Python SQLAlchemy基本操作和常用技巧(包含大量实例,非常好)
https://www.jb51.net/article/49789.htm
首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同。
因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文。
接着就从安装开始介绍吧,以 Debian/Ubuntu 为例(请确保有管理员权限):
1.MySQL
apt-get install mysql-client
apt-get install libmysqlclient15-dev
2.python-mysqldb
3.easy_install
python ez_setup.py
4.MySQL-Python
5.SQLAlchemy
如果是用其他操作系统,遇到问题就 Google 一下吧。我是在 Mac OS X 上开发的,途中也遇到些问题,不过当时没记下来……
值得一提的是我用了 MySQL-Python 来连 MySQL,因为不支持异步调用,所以和 Tornado 不是很搭。不过性能其实很好,因此以后再去研究下其他方案吧……
装好后就可以开始使用了:
from sqlalchemy.orm import sessionmaker
DB_CONNECT_STRING = 'mysql+mysqldb://root:123@localhost/ooxx?charset=utf8'
engine = create_engine(DB_CONNECT_STRING, echo=True)
DB_Session = sessionmaker(bind=engine)
session = DB_Session()
这里的
DB_CONNECT_STRING 就是连接数据库的路径。“mysql+mysqldb”指定了使用 MySQL-Python
来连接,“root”和“123”分别是用户名和密码,“localhost”是数据库的域名,“ooxx”是使用的数据库名(可省略),“charset”指定了连接时使用的字符集(可省略)。
create_engine() 会返回一个数据库引擎,echo 参数为 True 时,会显示每条执行的 SQL 语句,生产环境下可关闭。
sessionmaker()
会生成一个数据库会话类。这个类的实例可以当成一个数据库连接,它同时还记录了一些查询的数据,并决定什么时候执行 SQL 语句。由于
SQLAlchemy 自己维护了一个数据库连接池(默认 5 个连接),因此初始化一个会话的开销并不大。对 Tornado 而言,可以在
BaseHandler 的 initialize() 里初始化:
def initialize(self):
self.session = models.DB_Session()
def on_finish(self):
self.session.close()
对其他 Web 服务器来说,可以使用 sqlalchemy.orm.scoped_session,它能保证每个线程获得的 session 对象都是唯一的。不过 Tornado 本身就是单线程的,如果使用了异步方式,就可能会出现问题,因此我并没使用它。
拿到 session 后,就可以执行 SQL 了:
print session.execute('show databases').fetchall()
session.execute('use abc')
# 建 user 表的过程略
print session.execute('select * from user where id = 1').first()
print session.execute('select * from user where id = :id', {'id': 1}).first()
不过这和直接使用 MySQL-Python 没啥区别,所以就不介绍了;我还是喜欢 ORM 的方式,这也是我采用 SQLAlchemy 的唯一原因。
于是来定义一个表:
from sqlalchemy.types import CHAR, Integer, String
from sqlalchemy.ext.declarative import declarative_base
BaseModel = declarative_base()
def init_db():
BaseModel.metadata.create_all(engine)
def drop_db():
BaseModel.metadata.drop_all(engine)
class User(BaseModel):
__tablename__ = 'user'
id = Column(Integer, primary_key=True)
name = Column(CHAR(30)) # or Column(String(30))
init_db()
declarative_base() 创建了一个 BaseModel 类,这个类的子类可以自动与一个表关联。
以 User 类为例,它的 __tablename__ 属性就是数据库中该表的名称,它有 id 和 name 这两个字段,分别为整型和 30 个定长字符。Column 还有一些其他的参数,我就不解释了。
最后,BaseModel.metadata.create_all(engine) 会找到 BaseModel 的所有子类,并在数据库中建立这些表;drop_all() 则是删除这些表。
接着就开始使用这个表吧:
user = User(name='a')
session.add(user)
user = User(name='b')
session.add(user)
user = User(name='a')
session.add(user)
user = User()
session.add(user)
session.commit()
query = session.query(User)
print query # 显示SQL 语句
print query.statement # 同上
for user in query: # 遍历时查询
print user.name
print query.all() # 返回的是一个类似列表的对象
print query.first().name # 记录不存在时,first() 会返回 None
# print query.one().name # 不存在,或有多行记录时会抛出异常
print query.filter(User.id == 2).first().name
print query.get(2).name # 以主键获取,等效于上句
print query.filter('id = 2').first().name # 支持字符串
query2 = session.query(User.name)
print query2.all() # 每行是个元组
print query2.limit(1).all() # 最多返回 1 条记录
print query2.offset(1).all() # 从第 2 条记录开始返回
print query2.order_by(User.name).all()
print query2.order_by('name').all()
print query2.order_by(User.name.desc()).all()
print query2.order_by('name desc').all()
print session.query(User.id).order_by(User.name.desc(), User.id).all()
print query2.filter(User.id == 1).scalar() # 如果有记录,返回第一条记录的第一个元素
print session.query('id').select_from(User).filter('id = 1').scalar()
print query2.filter(User.id > 1, User.name != 'a').scalar() # and
query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and
query3 = query3.filter(User.name != 'a')
print query3.scalar()
print query2.filter(or_(User.id == 1, User.id == 2)).all() # or
print query2.filter(User.id.in_((1, 2))).all() # in
query4 = session.query(User.id)
print query4.filter(User.name == None).scalar()
print query4.filter('name is null').scalar()
print query4.filter(not_(User.name == None)).all() # not
print query4.filter(User.name != None).all()
print query4.count()
print session.query(func.count('*')).select_from(User).scalar()
print session.query(func.count('1')).select_from(User).scalar()
print session.query(func.count(User.id)).scalar()
print session.query(func.count('*')).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表
print session.query(func.count('*')).filter(User.name == 'a').limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回数
print session.query(func.sum(User.id)).scalar()
print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该数据库支持
print session.query(func.current_timestamp()).scalar()
print session.query(func.md5(User.name)).filter(User.id == 1).scalar()
query.filter(User.id == 1).update({User.name: 'c'})
user = query.get(1)
print user.name
user.name = 'd'
session.flush() # 写数据库,但并不提交
print query.get(1).name
session.delete(user)
session.flush()
print query.get(1)
session.rollback()
print query.get(1).name
query.filter(User.id == 1).delete()
session.commit()
print query.get(1)
增删改查都涉及到了,自己看看输出的 SQL 语句就知道了,于是基础知识就介绍到此了。
下面开始介绍一些进阶的知识。
如何批量插入大批数据?
可以使用非 ORM 的方式:
User.__table__.insert(),
[{'name': `randint(1, 100)`,'age': randint(1, 100)} for i in xrange(10000)]
)
session.commit()
上面我批量插入了 10000 条记录,半秒内就执行完了;而 ORM 方式会花掉很长时间。
如何让执行的 SQL 语句增加前缀?
使用 query 对象的 prefix_with() 方法:
session.execute(User.__table__.insert().prefix_with('IGNORE'), {'id': 1, 'name': '1'})
如何替换一个已有主键的记录?
使用 session.merge() 方法替代 session.add(),其实就是 SELECT + UPDATE:
session.merge(user)
session.commit()
或者使用
MySQL 的 INSERT … ON DUPLICATE KEY UPDATE,需要用到 @compiles
装饰器,有点难懂,自己搜索看吧:《SQLAlchemy ON DUPLICATE KEY UPDATE》 和
sqlalchemy_mysql_ext。
如何使用无符号整数?
可以使用 MySQL 的方言:
id = Column(INTEGER(unsigned=True), primary_key=True)
模型的属性名需要和表的字段名不一样怎么办?
开发时遇到过一个奇怪的需求,有个其他系统的表里包含了一个“from”字段,这在 Python 里是关键字,于是只能这样处理了:
如何获取字段的长度?
Column 会生成一个很复杂的对象,想获取长度比较麻烦,这里以 User.name 为例:
如何指定使用 InnoDB,以及使用 UTF-8 编码?
最简单的方式就是修改数据库的默认配置。如果非要在代码里指定的话,可以这样:
__table_args__ = {
'mysql_engine': 'InnoDB',
'mysql_charset': 'utf8'
}
MySQL 5.5 开始支持存储 4 字节的 UTF-8 编码的字符了,iOS 里自带的 emoji(如
Python SQLAlchemy基本操作和常用技巧(包含大量实例,非常好)的更多相关文章
- Python SQLAlchemy基本操作和常用技巧包含大量实例,非常好python
http://www.makaidong.com/%E8%84%9A%E6%9C%AC%E4%B9%8B%E5%AE%B6/28053.shtml "Python SQLAlchemy基本操 ...
- 【Python】Python SQLAlchemy基本操作和常用技巧
首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同.因为我是搭配 MySQL InnoDB 使用,所以使用其他数据库的也不能完全照搬本文. 接着就从安装 ...
- Python SQLAlchemy基本操作和常用技巧
转自:https://www.jb51.net/article/49789.htm 首先说下,由于最新的 0.8 版还是开发版本,因此我使用的是 0.79 版,API 也许会有些不同.因为我是搭配 M ...
- SQLAlchemy基本操作和常用技巧
点击打开链接 Python的ORM框架SQLAlchemy基本操作和常用技巧,包含大量实例,非常好的一个学习SQLAlchemy的教程,需要的朋友可以参考下 python编程语言下的一款开源软件.提供 ...
- Python中的 一些常用技巧函数[.join()]
1.str.join(item)字符串操作函数,参数item可以是字符串.元组.字典,示例 ','.join('abc') [','.join('abc')] 输出: 'a,b,c'['a', 'b' ...
- Python SqlAlchemy使用方法
1.初始化连接 from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker engine = create ...
- python算法常用技巧与内置库
python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...
- python爬虫:一些常用的爬虫技巧
python爬虫:一些常用的爬虫技巧 1.基本抓取网页 get方法: post方法: 2.使用代理IP 在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP; 在urllib2包中有Pr ...
- Python之路,Day21 - 常用算法学习
Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...
随机推荐
- 自己定义进度条PictureProgressBar——从开发到开源公布全过程
自己定义进度条PictureProgressBar--从开发到开源公布全过程 出处: 炎之铠邮箱:yanzhikai_yjk@qq.com 本文原创.转载请注明本出处! 本项目JCenter地址:ht ...
- 真正理解红黑树,真正的(Linux内核里大量用到的数据结构,且常被二货问到)
作为一种数据结构.红黑树可谓不算朴素.由于各种宣传让它过于神奇,网上搜罗了一大堆的关于红黑树的文章,不外乎千篇一律,介绍概念,分析性能,贴上代码,然后给上罪恶的一句话.它最坏情况怎么怎么地... ...
- JS高程3:表单脚本
HTML和CSS对表单的操作还是比较乏力的,在表单操作中,JS势必会使用到. 基础知识 文本框 选择框 序列化 富文本编辑器 基础知识 HTMLFormElement接口可以创建或者修改<for ...
- poj 3017 Cut the Sequence(单调队列优化 )
题目链接:http://poj.org/problem?id=3017 题意:给你一个长度为n的数列,要求把这个数列划分为任意块,每块的元素和小于m,使得所有块的最大值的和最小 分析:这题很快就能想到 ...
- tail 命令详解
tail 指令 功能:从指定点开始将文件写到标准输出.使用tail命令的-f选项可以方便的查阅正在改变的日志文件,tail -f filename会把filename里最尾部的内容显示在屏幕上,并且不 ...
- SQLite学习手册(转)
原文网址:http://www.cnblogs.com/stephen-liu74/archive/2012/01/22/2328757.html 在实际的应用中,SQLite作为目前最为流行的开源嵌 ...
- C++读取Sql Server
代码如下: // ReadSqlConsole.cpp: 主项目文件. #include "stdafx.h" #include <iostream> #include ...
- input取值
----------------------------1------------------------------ <span class="lv-a-right" id ...
- Hibernate中:不看数据库,不看XML文件,不看查询语句,怎么样能知道表结构?
Hibernate中:不看数据库,不看XML文件,不看查询语句,怎么样能知道表结构? 解答:可以看与XML文件对应的域模型.
- [转]软件测试- 3 - Mock 和Stub的区别
由于一直没有完全搞明白Mock和Stub的区别,所以查了很多文章,而这一篇是做好的: http://yuan.iteye.com/blog/470418 尤其是8楼,Frostred的发言,描述地相当 ...