[bzoj3244][noi2013]树的计数 题解
UPD: 那位神牛的题解更新了,在这里。
----------------------------------------------------------------------------------------------------
被这题虐了好久……本来是看这个题解,然后晕乎乎的,没怎么看懂……然后YGW巨神质疑那个程序,于是就举出了一个反例……(rzO Orz)。于是本蒟蒻就顺着那个题解的思路和YGW的反例弄出了一种奇葩的方法……
我们在BFS序上分割,分出每一层。这样一种分割方案对应一种树的形态。
其实,分割方案会有不同,原因在于存在某些点,他们既可以做与他相邻的点的儿子,也可以做兄弟。那么他们对ans的贡献是0.5。而那些只能做儿子的点就只能被分配到下一层,所以对ans的贡献是1.0;其它的点对分层方案没有影响,对ans就没有贡献。于是关键在于如何找到这些点。
我们把BFS序编为1..n,以此重标号DFS序。
我们从1到n遍历BFS序,根据dfs序一个一个判断。
考虑那些既可以做兄弟也可以做儿子的点。
这些点必须满足既可以做兄弟也可以做儿子(废话- -)。
可以发现,那些点刚好在BFS和DFS序都是连续的。但是这还不够。我们还必须满足这个点可以分配到下一层(因为如果可以被分配到下一层就可以做兄弟)。于是考虑两个情况:
1.下一层有一个点的BFS序>当前点。
2.当前层有一个点的BFS序>当前点,且这个点必须在当前层。(注:有一种情况存在一个点的BFS序>当前点,但是不一定要在当前层,这种情况不影响当前点的分配方案。)
这两个情况下当前点都只能被分配到当前层。
第一种等价于dfs序<当前点的点中存在一个bfs序>当前点的点。(可以用前缀最值判断)
第二种等价于在dfs序中这个点的到前一个点之间有一个bfs序<当前点,这相当于限制了当前点与前一个点不是同一个点的儿子。(可以用线段树判断,否则要n^2,完全可以构造数据卡掉,如bfs:1 2 3 4 5 6 7 8 ... dfs:1 3 5 7 ... 2 4 6 8 ...)
当排除了上面两种情况后,当前点就可以放到下面去。且把当前点放到下面去对后面所有的点的分配是没有影响的,这样保证了正确性。
考虑那些只能做儿子的点。
这种情况只出现在当前点的dfs序<上一个点的dfs序。
最后贴一下卡掉那个代码的数据和我的代码
9
1 2 4 5 6 7 9 8 3
1 2 3 4 5 6 7 8 9
/**************************************************************
Problem: 3244
User: lazycal
Language: C++
Result: Accepted
Time:292 ms
Memory:7056 kb
****************************************************************/
#include <cstdio>
#include <algorithm>
const int N = 200000 + 9;
int Max[N],Min[N*4],rk[N],dfs[N],bfs[N],n;
void build(const int idx,const int l,const int r)
{
if (l == r) return (void)(Min[idx] = dfs[l]);
build(idx * 2,l,(l+r)/2);
build(idx*2+1,(l+r)/2+1,r);
Min[idx] = std::min(Min[idx*2],Min[idx*2+1]);
}
int MIN(const int idx,const int l,const int r,const int L,const int R)
{
if (L <= l && r <= R) return Min[idx];
int mid = (l + r)/2,res = 0x7fffffff;
if (L <= mid) res = std::min(res,MIN(idx * 2,l,mid,L,R));
if (mid < R) res = std::min(res,MIN(idx*2+1,mid+1,r,L,R));
return res;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("3244.in","r",stdin);
freopen("3244.out","w",stdout);
#endif
scanf("%d",&n);
for (int i = 1; i <= n; ++i) {
scanf("%d",dfs + i);
rk[dfs[i]] = i;
}
for (int i = 1; i <= n; ++i) {
scanf("%d",bfs + i);
dfs[rk[bfs[i]]] = i;
}
for (int i = 1; i <= n; ++i) {
Max[i] = std::max(Max[i - 1],dfs[i]);
rk[dfs[i]] = i;
}
build(1,1,n);
int ans = 2,tmp = 0;
for (int i = 1; i < n; ++i) {
if (i == 1 || rk[i + 1] < rk[i]) ans += tmp + 2,tmp = 0;
else if (rk[i] + 1 == rk[i + 1] && Max[rk[i]] < i + 1) ++tmp;
else if (MIN(1,1,n,rk[i] + 1,rk[i + 1] - 1) < i) tmp = 0;
}
ans += tmp;
printf("%.3f\n%.3f\n%.3f\n",ans/2.0-0.001,ans/2.0,ans/2.0+0.001);
}
[bzoj3244][noi2013]树的计数 题解的更多相关文章
- BZOJ3244 NOI2013树的计数(概率期望)
容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...
- BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】
题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...
- [BZOJ3244][NOI2013]树的计数
这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- 【BZOJ3244】【UOJ#122】【NOI2013]树的计数
NOI都是酱的题怎么玩啊,哇.jpg 原题: 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的 ...
- [bzoj3244] [洛谷P1232] [Noi2013] 树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- BZOJ3244/UOJ122 [Noi2013]树的计数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 3244: [Noi2013]树的计数 - BZOJ
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
- bzoj 3244: [Noi2013]树的计数
Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...
随机推荐
- Linux 命令行生成密码的 10 种方式
内容来自: 10 Ways to Generate a Random Password from the Linux Command Line Linux 好玩的事儿是达成一件事情可以用上百种方式. ...
- Bazinga(HDU5510+KMP)
t题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5510 题目: 题意:找到一个编号最大的字符串满足:存在一个编号比它小的字符串不是它的字串. 思路:K ...
- html+js实现的触屏版贪吃蛇
查看线上demo(服务器经常断开,推荐下载源码本地打开): http://47.93.103.19:8044/client/ ; 使用手机打开或者chrome浏览器的手机模式打开 源码地址 :http ...
- webpack_配置和使用教程
webpack是一个模块打包的工具,它的作用是把互相依赖的模块处理成静态资源. webpack 可以使用 loader 来预处理文件.这允许你打包除 JavaScript 之外的任何静态资源.你可以使 ...
- D题 hdu 1412 {A} + {B}
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1412 {A} + {B} Time Limit: 10000/5000 MS (Java/Others ...
- javaWeb面试题(重要)
1.Javaweb 技术的结构 1.1 技术结构图
- Java案例之随机验证码功能实现
实现的功能比较简单,就是随机产生了四个字符然后输出.效果图如下,下面我会详细说一下实现这个功能用到了那些知识点,并且会把 这些知识点详细的介绍出来.哈哈 ,大神勿喷,对于初学Java的人帮助应该蛮大的 ...
- glom模块的使用(一)
glom模块的使用 简单说下glom模块主要是处理结构化数据用的,安装简单pip install glom即可,下面就glom的方法参数做例子讲解. glom 和模块同名的glom方法使用方法: .g ...
- 【bzoj3545】peaks
离线一下,动态开点+线段树合并,然后权值线段树上询问kth即可. #include<bits/stdc++.h> ; *; using namespace std; ; inline in ...
- C后端设计开发 - 第3章-气功-原子锁线程协程
正文 第3章-气功-原子锁线程协程 后记 如果有错误, 欢迎指正. 有好的补充, 和疑问欢迎交流, 一块提高. 在此谢谢大家了. 童话镇 - http://music.163.com/#/m/song ...