洛谷4245:【模板】任意模数NTT——题解
https://www.luogu.org/problemnew/show/P4245
给两个多项式,求其乘积,每个系数对p取模。
参考:
代码与部分理解参考https://www.luogu.org/blog/yhzq/solution-p4245
NTT常用模数https://blog.csdn.net/hnust_xx/article/details/76572828
一些有关NTT讲解的东西。
————————————
NTT作用和DFT相同,只是NTT可以取模,且精度误差小。
我们的唯一限制就是取模的质数p=k*2^n+1,因此998244353应运而生。
对于如何构造使得每次变换都会减少一半的长度这个问题和p的原根有关,在这里就不讲了。
然而对于p不确定的时候,我们也可以使用中国剩余定理。
具体来说,找到一些p1,p2……pk满足NTT条件,然后计算结果,最后用中国剩余定理依次消即可。
然而这题很恶心的是很有可能爆longlong,且在模数大于int的情况下也没法快速乘,这时候就要使用骆克强提出的快速乘了(具体可以前往参考处第一篇博客。)
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long ll;
typedef long double dl;
const int N=5e5+;
const ll p1=,p2=,p3=,g=;
const ll M=p1*p2;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
ll qpow(ll a,ll n,ll p){
ll res=;
while(n){
if(n&)res=res*a%p;
a=a*a%p;n>>=;
}
return res;
}
ll qmulti(ll a,ll b,ll p){
a%=p,b%=p;
return ((a*b-(ll)((ll)((dl)a/p*b+0.5)*p))%p+p)%p;
}
void FNT(ll a[],int n,int on,ll p){
for(int i=,j=n>>;i<n-;i++){
if(i<j)swap(a[i],a[j]);
int k=n>>;
while(j>=k){j-=k;k>>=;}
if(j<k)j+=k;
}
for(int i=;i<=n;i<<=){
ll res=qpow(g,(p-)/i,p);
for(int j=;j<n;j+=i){
ll w=;
for(int k=j;k<j+i/;k++){
ll u=a[k],t=w*a[k+i/]%p;
a[k]=(u+t)%p;
a[k+i/]=(u-t+p)%p;
w=w*res%p;
}
}
}
if(on==-){
ll inv=qpow(n,p-,p);
a[]=a[]*inv%p;
for(int i=;i<=n/;i++){
a[i]=a[i]*inv%p;
if(i!=n-i)a[n-i]=a[n-i]*inv%p;
swap(a[i],a[n-i]);
}
}
}
int n,m,p;
ll a[N],b[N],c[N],d[N],ans[][N];
int main(){
n=read(),m=read(),p=read();
for(int i=;i<=n;i++)a[i]=read();
for(int i=;i<=m;i++)b[i]=read();
int nn=;
while(nn<=n+m)nn<<=; memcpy(c,a,sizeof(a));memcpy(d,b,sizeof(b));
FNT(c,nn,,p1);FNT(d,nn,,p1);
for(int i=;i<nn;i++)ans[][i]=c[i]*d[i]%p1;
memset(c,,sizeof(c));memset(d,,sizeof(d)); memcpy(c,a,sizeof(a));memcpy(d,b,sizeof(b));
FNT(c,nn,,p2);FNT(d,nn,,p2);
for(int i=;i<nn;i++)ans[][i]=c[i]*d[i]%p2;
memset(c,,sizeof(c));memset(d,,sizeof(d)); memcpy(c,a,sizeof(a));memcpy(d,b,sizeof(b));
FNT(c,nn,,p3);FNT(d,nn,,p3);
for(int i=;i<nn;i++)ans[][i]=c[i]*d[i]%p3;
memset(c,,sizeof(c));memset(d,,sizeof(d)); FNT(ans[],nn,-,p1);
FNT(ans[],nn,-,p2);
FNT(ans[],nn,-,p3); for(int i=;i<=n+m;i++){
ll A=(qmulti(ans[][i]*p2%M,qpow(p2%p1,p1-,p1),M)+
qmulti(ans[][i]*p1%M,qpow(p1%p2,p2-,p2),M))%M;
ll k=((ans[][i]-A)%p3+p3)%p3*qpow(M%p3,p3-,p3)%p3;
printf("%lld ",((k%p)*(M%p)%p+A%p)%p);
}
puts("");
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
洛谷4245:【模板】任意模数NTT——题解的更多相关文章
- 洛谷.4245.[模板]任意模数NTT(MTT/三模数NTT)
题目链接 三模数\(NTT\): 就是多模数\(NTT\)最后\(CRT\)一下...下面两篇讲的都挺明白的. https://blog.csdn.net/kscla/article/details/ ...
- 洛谷 P4245 [模板]任意模数NTT —— 三模数NTT / 拆系数FFT(MTT)
题目:https://www.luogu.org/problemnew/show/P4245 用三模数NTT做,需要注意时间和细节: 注意各种地方要取模!传入 upt() 里面的数一定要不超过2倍 m ...
- 洛谷.3803.[模板]多项式乘法(NTT)
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...
- [题解] Luogu P4245 [模板]任意模数NTT
三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说 ...
- 洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- [洛谷P4245]【模板】任意模数NTT
题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...
- 【模板】任意模数NTT
题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...
- 【知识总结】多项式全家桶(三)(任意模数NTT)
经过两个月的咕咕,"多项式全家桶" 系列终于迎来了第三期--(雾) 上一篇:[知识总结]多项式全家桶(二)(ln和exp) 先膜拜(伏地膜)大恐龙的博客:任意模数 NTT (在页面 ...
随机推荐
- http知识点 前端
前端必须明白的http知识点 对于http的报文格式就不多细说了,做为前端开发,我们需要知道前后端联调时的请求和响应之间请求头和返回头之间的关系和每个字段中的涵意,静态文件资源在加载时我们所观察到可性 ...
- Qt-QML-Slider-滑块-Style
感觉滑块这个东西,可以算是一个基本模块了,在我的项目中也有这个模块,今天我将学一下一下滑块的使用以及美化工作. 想学习滑块,那就要先建立一个滑块,新建工程什么的这里就省略了,不会的可以看我前面的几篇文 ...
- Linux命令大全(非常全,史上最全)
最近学习Linux,最大的体验就是它的很多东西都需要由命令来进行控制,下面是我总结的一些命令,供大家参考: 系统信息 arch 显示机器的处理器架构 uname -m 显示机器的处理器架构 una ...
- webservice调用天气
class WebServiceHelper { /// <summary> /// 动态调用WebService /// </summary> /// <param n ...
- JAVA中 "\" 和 "/" 的区别
1.在java中路径一般用”/” 2.linux.unix中的路径一般用”/” 3.windows中的路径一般用”\” 所以在java中写windows路径一般用”/”,或用“\”将”\”转义一下(& ...
- JS里点击事件判断是否 触发了节点 和给标签添加class属性
$("#activityType").click(function(e){ if(e.target==$("#bb")[0]){ var bb=document ...
- Faster RCNN论文解析
Faster R-CNN由一个推荐区域的全卷积网络和Fast R-CNN组成, Fast R-CNN使用推荐区域.整个网络的结构如下: 1.1 区域推荐网络 输入是一张图片(任意大小), 输出是目标推 ...
- su和sudo的使用
用于用户身份切换 一.su 命令形式 代表内容 su 切换为root,以non-login shell的方式 su - 切换为root,以login shell的方式 su -l 账号 切换为“账号” ...
- 环境变量PATH
一.举例 我在用户主文件夹执行命令“ls”,会在屏幕显示该文件夹下的所有文件.然而,ls的完整文件名为“/bin/ls”,按道理我不在/bin下要想执行ls命令必须输入“/bin/ls”,但我仅仅需要 ...
- Android UI 设计之 TextView EditText 组件属性方法最详细解析
. 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . TextView 相关类的继承结构 ...