题解 ZROI3

T1

与《滑动窗口》类似,用单调队列维护

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define lor(a,b,c) for(register int a=b;a<=c;++a)
#define ror(a,b,c) for(register int a=c;a>=b;--a)
#define tor(a,b) for(register int a=head[b];a;a=nxt[a]) const int MAX=1e5+5;
int n,m,input,num[MAX];
struct data{
int val,pos;
};
deque <data> line; inline int read(); int main(){
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
// freopen("test.out","w",stdout);
#endif m=read();
while(input=read(),input!=-1){
num[++n]=input;
} lor(i,1,n){
while(!line.empty()&&line.front().pos<i-m+1) line.pop_front();
while(!line.empty()&&line.back().val<=num[i]) line.pop_back();
line.push_back((data){num[i],i});
if(i>=m) printf("%d\n",line.front().val);
} return 0;
} inline int read(){
char tmp=getchar(); int sum=0; bool flag=false;
while(tmp<'0'||tmp>'9'){
if(tmp=='-') flag=true;
tmp=getchar();
}
while(tmp>='0'&&tmp<='9'){
sum=(sum<<1)+(sum<<3)+tmp-'0';
tmp=getchar();
}
return flag?-sum:sum;
}

T2

看起来是树链剖分..但其实用不着。由于只有”子树“相关的操作,因此把树打成DFS序后修改连续的区间即可

#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define lor(a,b,c) for(register int a=b;a<=c;++a)
#define ror(a,b,c) for(register int a=c;a>=b;--a)
#define tor(a,b) for(register int a=head[b];a;a=nxt[a]) const int MAX=1e5+5; int n,m; char input[MAX];
int root=1,ecnt,edge[MAX<<1],head[MAX],nxt[MAX<<1];
int hei[MAX],size[MAX],fa[MAX],ind[MAX],rev[MAX];
int val[MAX<<2],sum[MAX<<2],lazy_rev[MAX<<2]; inline int read();
inline void insert(int,int,int);
void dfs(int,int);
void build(int,int,int);
int print(int,int,int,int);
void change(int,int,int,bool);
void pushdown(int,int,int);
void modify_rev(int,int,int,int,int);
int query(int,int,int,int,int); int main(){
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif n=read(); m=read(); cin>>input+1;
lor(i,1,n-1){
int u=read(),v=read();
insert(u,v,++ecnt); insert(v,u,++ecnt);
}
dfs(root,root);
build(1,1,n); lor(i,1,m){
char type; int x; cin>>type; x=read();
switch(type){
case 'S':
modify_rev(1,1,n,rev[x],rev[x]+size[x]-1);
break;
case 'Q':
printf("%d\n",query(1,1,n,rev[x],rev[x]+size[x]-1));
break;
}
} return 0;
} inline int read(){
char tmp=getchar(); int sum=0; bool flag=false;
while(tmp<'0'||tmp>'9'){
if(tmp=='-') flag=true;
tmp=getchar();
}
while(tmp>='0'&&tmp<='9'){
sum=(sum<<1)+(sum<<3)+tmp-'0';
tmp=getchar();
}
return flag?-sum:sum;
} inline void insert(int from,int to,int id){
nxt[id]=head[from]; head[from]=id; edge[id]=to;
} void dfs(int u,int f){
hei[u]=hei[f]+1;
fa[u]=f;
ind[++ind[0]]=u;
rev[u]=ind[0];
tor(i,u){
int v=edge[i]; if(v==f) continue;
dfs(v,u);
size[u]+=size[v];
}
size[u]++;
} void build(int p,int l,int r){
if(l==r) {val[p]=input[ind[l]]-'0'; sum[p]=val[p]==1; return;}
int mid=(l+r)>>1;
build(p<<1,l,mid); build(p<<1|1,mid+1,r);
sum[p]=sum[p<<1]+sum[p<<1|1];
} int print(int p,int l,int r,int k){
if(l==k&&k==r) return val[p];
pushdown(p,l,r);
int mid=(l+r)>>1;
if(k<=mid) return print(p<<1,l,mid,k);
if(mid+1<=k) return print(p<<1|1,mid+1,r,k);
} void change(int p,int l,int r,bool rev){
lazy_rev[p]^=rev;
if(rev) sum[p]=(r-l+1)-sum[p]; if(l==r){
if(lazy_rev[p]) val[p]^=1;
lazy_rev[p]=false;
}
} void pushdown(int p,int l,int r){
if(!lazy_rev[p]) return;
int mid=(l+r)>>1;
change(p<<1,l,mid,lazy_rev[p]);
change(p<<1|1,mid+1,r,lazy_rev[p]);
lazy_rev[p]=false;
} void modify_rev(int p,int l,int r,int L,int R){
if(L<=l&&r<=R) {change(p,l,r,true); return;}
pushdown(p,l,r);
int mid=(l+r)>>1;
if(L<=mid) modify_rev(p<<1,l,mid,L,R);
if(mid+1<=R) modify_rev(p<<1|1,mid+1,r,L,R);
sum[p]=sum[p<<1]+sum[p<<1|1];
} int query(int p,int l,int r,int L,int R){
if(L<=l&&r<=R) return sum[p];
pushdown(p,l,r);
int mid=(l+r)>>1,ans=0;
if(L<=mid) ans+=query(p<<1,l,mid,L,R);
if(mid+1<=R) ans+=query(p<<1|1,mid+1,r,L,R);
return ans;
}

T3

在考场上就意识到了和GSS4极其相似,但败在了数学证明上..

结论:任意数字\(x\)经过一次有效的取模之后(模数小于 x),其大小必定小于\(\frac{x}{2}\)

证明:若 \(mod\geq \frac{x}{2}\),则\(x-mod\leq \frac {x}{2}\);若\(mod < \frac{x}{2}\),则\(x <mod \leq \frac{x}{2}\)

这样就可以保证任意节点的操作次数不大于\(log_2 10^9=30\),时间复杂度得到保证。其余细节与GSS4大同小异

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
#define lor(a,b,c) for(register int a=b;a<=c;++a) const int MAX=1e5+5; int n,m; ll init[MAX];
ll val_max[MAX<<2],val_sum[MAX<<2]; inline int read();
void build(int,int,int);
void modify_mod(int,int,int,int,int,ll);
void modify_as(int,int,int,int,ll);
ll query(int,int,int,int,int); int main(){
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif n=read(); m=read();
lor(i,1,n) scanf("%lld",&init[i]); build(1,1,n);
lor(i,1,m){
int type,l,r; ll x; type=read();
switch(type){
case 1:
l=read(); r=read();
printf("%lld\n",query(1,1,n,l,r));
break;
case 2:
l=read(); r=read(); scanf("%lld",&x);
modify_mod(1,1,n,l,r,x);
break;
case 3:
l=read(); scanf("%lld",&x);
modify_as(1,1,n,l,x);
break;
}
} return 0;
} inline int read(){
char tmp=getchar(); int sum=0; bool flag=false;
while(tmp<'0'||tmp>'9'){
if(tmp=='-') flag=true;
tmp=getchar();
}
while(tmp>='0'&&tmp<='9'){
sum=(sum<<1)+(sum<<3)+tmp-'0';
tmp=getchar();
}
return flag?-sum:sum;
} void build(int p,int l,int r){
if(l==r) {val_sum[p]=val_max[p]=init[l]; return;}
int mid=(l+r)>>1;
build(p<<1,l,mid); build(p<<1|1,mid+1,r);
val_sum[p]=val_sum[p<<1]+val_sum[p<<1|1];
val_max[p]=max(val_max[p<<1],val_max[p<<1|1]);
} void modify_mod(int p,int l,int r,int L,int R,ll k){
if(l==r) {val_sum[p]%=k; val_max[p]=val_sum[p]; return;}
int mid=(l+r)>>1;
if(L<=mid&&val_max[p<<1]>=k) modify_mod(p<<1,l,mid,L,R,k);
if(mid+1<=R&&val_max[p<<1|1]>=k) modify_mod(p<<1|1,mid+1,r,L,R,k);
val_sum[p]=val_sum[p<<1]+val_sum[p<<1|1];
val_max[p]=max(val_max[p<<1],val_max[p<<1|1]);
} void modify_as(int p,int l,int r,int pos,ll k){
if(l==pos&&pos==r) {val_sum[p]=k; val_max[p]=k; return;}
int mid=(l+r)>>1;
if(pos<=mid) modify_as(p<<1,l,mid,pos,k);
if(mid+1<=pos) modify_as(p<<1|1,mid+1,r,pos,k);
val_sum[p]=val_sum[p<<1]+val_sum[p<<1|1];
val_max[p]=max(val_max[p<<1],val_max[p<<1|1]);
} ll query(int p,int l,int r,int L,int R){
if(L<=l&&r<=R) return val_sum[p];
int mid=(l+r)>>1; ll ans=0;
if(L<=mid) ans+=query(p<<1,l,mid,L,R);
if(mid+1<=R) ans+=query(p<<1|1,mid+1,r,L,R);
return ans;
}

ZROI3的更多相关文章

随机推荐

  1. python关于Django搭建简单博客项目(教程)

    由于csdn各种django blog博文都有或多或少的bug,所以我决定自己写一篇,先附上教程,详解在另一篇博文里,为了便于大家复制粘贴,本文代码尽量不使用图片. 源代码及解析文章请在我的githu ...

  2. Spring Boot:自定义 Whitelabel 错误页面

    一.概述在本文中,我们将研究如何禁用和自定义 Spring Boot 应用程序的默认错误页面,因为正确的错误处理描述了专业性和质量工作. 2.禁用白标错误页面 首先,让我们看看如何通过将server. ...

  3. Oracle生成awr报告操作步骤介绍

    AWR全称Automatic Workload Repository,自动负载信息库,是Oracle 10g版本后推出的一种性能收集和分析工具,提供了一个时间段内整个系统的报表数据.通过AWR报告,可 ...

  4. 【转】Linux文件权限

    转载一篇写得非常详细的linux文件权限,方便自己查阅! 转载来源:https://www.cnblogs.com/keyi/p/8124841.html ---------------------- ...

  5. C#自定义控件开发(2)—LED指示灯

    下面来开发一个LED指示灯控件,如下: 设计属性包括: 外环宽度,外环间隙,内环间隙,颜色[五种],当前值. 由于该LED指示灯基本是完全独立设计的,并不是在某个控件的基础上进行的开发,因此,这里使 ...

  6. 7 款殿堂级的开源 CMS(内容管理系统)

    最近,有读者留言让我推荐开源 CMS.我本想直接回复 WordPress,但是转念一想我玩 WordPress 是 2010 年左右的事情了,都过去十年了,它会不会有些过时呢?有没有新的.更好玩的开源 ...

  7. 2022春每日一题:Day 9

    题目:IncDec Sequence 思维题,差分好题,每次区间操作,对应差分a[l]+=v,a[r+1]-=v,在差分数组中一定有一个正负号抵消,那么我们求出差分数组中正数(负数)和,记做s1,s2 ...

  8. Go语言核心36讲23

    我在上两篇文章中,详细地讲述了Go语言中的错误处理,并从两个视角为你总结了错误类型.错误值的处理技巧和设计方式. 在本篇,我要给你展示Go语言的另外一种错误处理方式.不过,严格来说,它处理的不是错误, ...

  9. 【深入浅出 Yarn 架构与实现】4-1 ResourceManager 功能概述

    前面几篇文章对 Yarn 基本架构.程序基础库.应用设计方法等进行了介绍.之后几篇将开始对 Yarn 核心组件进行剖析. ResourceManager(RM)是 Yarn 的核心管理服务,负责集群管 ...

  10. 微服务---Dubbo+Zookeeper

    dubboAdmin客户端 --监控 && 启动 Zookeeper 客户端 --注册中心 生产者: <?xml version="1.0" encoding ...