Python花式读取大文件(10g/50g/1t)遇到的性能问题(面试向)
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_97
最近无论是面试还是笔试,有一个高频问题始终阴魂不散,那就是给一个大文件,至少超过10g,在内存有限的情况下(低于2g),该以什么姿势读它?
所有人都知道,用python读文件有一套”标准流程“:
def retrun_count(fname):
"""计算文件有多少行
"""
count = 0
with open(fname) as file:
for line in file:
count += 1
return count
为什么这种文件读取方式会成为标准?这是因为它有两个好处:
with 上下文管理器会自动关闭打开的文件描述符
在迭代文件对象时,内容是一行一行返回的,不会占用太多内存
但这套标准做法并非没有缺点。如果被读取的文件里,根本就没有任何换行符,那么上面的第二个好处就不成立了。当代码执行到 for line in file 时,line 将会变成一个非常巨大的字符串对象,消耗掉非常可观的内存。
如果有一个 5GB 大的文件 big_file.txt,它里面装满了随机字符串。只不过它存储内容的方式稍有不同,所有的文本都被放在了同一行里
如果我们继续使用前面的 return_count 函数去统计这个大文件行数。那么在一台pc上,这个过程会足足花掉 65 秒,并在执行过程中吃掉机器 2GB 内存
为了解决这个问题,我们需要暂时把这个“标准做法”放到一边,使用更底层的 file.read() 方法。与直接循环迭代文件对象不同,每次调用 file.read(chunk_size) 会直接返回从当前位置往后读取 chunk_size 大小的文件内容,不必等待任何换行符出现。
所以,如果使用 file.read() 方法,我们的函数可以改写成这样:
def return_count_v2(fname):
count = 0
block_size = 1024 * 8
with open(fname) as fp:
while True:
chunk = fp.read(block_size)
# 当文件没有更多内容时,read 调用将会返回空字符串 ''
if not chunk:
break
count += 1
return count
在新函数中,我们使用了一个 while 循环来读取文件内容,每次最多读取 8kb 大小,这样可以避免之前需要拼接一个巨大字符串的过程,把内存占用降低非常多。
利用生成器解耦代码
假如我们在讨论的不是 Python,而是其他编程语言。那么可以说上面的代码已经很好了。但是如果你认真分析一下 return_count_v2 函数,你会发现在循环体内部,存在着两个独立的逻辑:数据生成(read 调用与 chunk 判断) 与 数据消费。而这两个独立逻辑被耦合在了一起。
为了提升复用能力,我们可以定义一个新的 chunked_file_reader 生成器函数,由它来负责所有与“数据生成”相关的逻辑。这样 return_count_v3 里面的主循环就只需要负责计数即可。
def chunked_file_reader(fp, block_size=1024 * 8):
"""生成器函数:分块读取文件内容
"""
while True:
chunk = fp.read(block_size)
# 当文件没有更多内容时,read 调用将会返回空字符串 ''
if not chunk:
break
yield chunk
def return_count_v3(fname):
count = 0
with open(fname) as fp:
for chunk in chunked_file_reader(fp):
count += 1
return count
进行到这一步,代码似乎已经没有优化的空间了,但其实不然。iter(iterable) 是一个用来构造迭代器的内建函数,但它还有一个更少人知道的用法。当我们使用 iter(callable, sentinel) 的方式调用它时,会返回一个特殊的对象,迭代它将不断产生可调用对象 callable 的调用结果,直到结果为 setinel 时,迭代终止。
def chunked_file_reader(file, block_size=1024 * 8):
"""生成器函数:分块读取文件内容,使用 iter 函数
"""
# 首先使用 partial(fp.read, block_size) 构造一个新的无需参数的函数
# 循环将不断返回 fp.read(block_size) 调用结果,直到其为 '' 时终止
for chunk in iter(partial(file.read, block_size), ''):
yield chunk
最后只需要两行代码,就构造出了一个可复用的分块读取方法,和一开始的”标准流程“按行读取 2GB 内存/耗时 65 秒 相比,使用生成器的版本只需要 7MB 内存 / 12 秒就能完成计算。效率提升了接近 4 倍,内存占用更是不到原来的 1%,简直完美。
原文转载自「刘悦的技术博客」 https://v3u.cn/a_id_97
Python花式读取大文件(10g/50g/1t)遇到的性能问题(面试向)的更多相关文章
- Python逐块读取大文件行数的代码 - 为程序员服务
Python逐块读取大文件行数的代码 - 为程序员服务 python数文件行数最简单的方法是使用enumerate方法,但是如果文件很大的话,这个方法就有点慢了,我们可以逐块的读取文件的内容,然后按块 ...
- python 如何读取大文件
一般的读取文件的方法: with open(file_path, "r") as f: print f.read() 或者 with open(file_path,"r& ...
- python json及mysql——读取json文件存sql、数据库日期类型转换、终端操纵mysql及python codecs读取大文件问题
preface: 近期帮师兄处理json文件,须要读到数据库里面,以备其兴许从数据库读取数据.数据是关于yelp站点里面的: https://github.com/Yelp/dataset-examp ...
- Python 之读取大文件readline与readlines的差别
import time def get_all_lines(filename): start_time = time.time() try: f = open(filename, 'rb') exce ...
- 面试题-python 如何读取一个大于 10G 的txt文件?
前言 用python 读取一个大于10G 的文件,自己电脑只有8G内存,一运行就报内存溢出:MemoryError python 如何用open函数读取大文件呢? 读取大文件 首先可以自己先制作一个大 ...
- Python读取大文件的"坑“与内存占用检测
python读写文件的api都很简单,一不留神就容易踩"坑".笔者记录一次踩坑历程,并且给了一些总结,希望到大家在使用python的过程之中,能够避免一些可能产生隐患的代码. 1. ...
- Python读取大文件(GB)
Python读取大文件(GB) - CSDN博客 https://blog.csdn.net/shudaqi2010/article/details/54017766
- 强悍的Python读取大文件的解决方案
这是一道著名的 Python 面试题,考察的问题是,Python 读取大文件和一般规模的文件时的区别,也即哪些接口不适合读取大文件. 1. read() 接口的问题 f =open(filename, ...
- PHP 与Python 读取大文件的区别
php读取大文件的方法 <?php function readFile($file) { # 打开文件 $handle = fopen($file, 'rb'); while (feof($ ...
随机推荐
- 896.Montonic Array - LeetCode
Question 896. Monotonic Array Solution 题目大意: 类似于数学中的减函数,增函数和物理中的加速度为正或为负 思路: 先比较前两个是大于0还是小于0,如果等于0就比 ...
- Hadoop: 单词计数(Word Count)的MapReduce实现
1.Map与Reduce过程 1.1 Map过程 首先,Hadoop会把输入数据划分成等长的输入分片(input split) 或分片发送到MapReduce.Hadoop为每个分片创建一个map任务 ...
- VueX数据持久化
解决:Vue刷新时获取不到数据 解决方案:1.本地存储 2.Vuex数据持久化工具插件 本地存储 import Vue from "vue"; import Vuex from & ...
- git bisect:让你闭眼都能定位疑难 bug的利器
摘要:git bisect命令使用二分搜索算法来查找提交历史中的哪一次提交引入了错误.它几乎能让你闭着眼睛快速定位任何源码导致的问题,非常实用. 本文分享自华为云社区<利用好 git bisec ...
- Python 微博搜索爬虫
微博搜索爬虫 网页分析 由于网页端反爬虫机制比较完善所以才去移动端进行爬虫. url地址:https://m.weibo.cn/ 搜索框,输入关键词进行搜索 对网页进行抓包,找到相关数据 查看数据是否 ...
- 解锁!玩转 HelloGitHub 的新姿势
本文不会涉及太多技术细节和源码,请放心食用 大家好,我是 HelloGitHub 的老荀,好久不见啊! 我在完成 HelloZooKeeper 系列之后,就很少"露面了".但是我对 ...
- 云开发中的战斗机 Laf,让你像写博客一样写代码
各位云原生搬砖师 and PPT 架构师,你们有没有想过像写文章一样方便地写代码呢? 怎样才能像写文章一样写代码? 理想的需求应该是可以在线编写.调试函数,不用重启服务,随时随地在 Web 上查看函数 ...
- ERP采购收货在标准成本和移动平均价下的差别
欢迎关注微信公众号:iERPer (ERP咨询顾问之家) ERP系统在处理主要的采购流程有: 下采购合同->下采购订单->收货->发票校验->付款(财务) 其中 收货和发票校验 ...
- 14.Nginx搭建及优化
Nginx搭建及优化 目录 Nginx搭建及优化 Nginx服务基础 概述 Nginx和Apache的优缺点比较 编译安装Nginx服务 添加Nginx系统服务 Nginx服务配置文件 nginx服务 ...
- ansible变量引用
1. 在/etc/ansible/hosts默认文件中定义变量 [test] 192.168.163.130 #[test:vars] #key=ansible 或者 192.168.163.130 ...