分析

一个比较显然的方式是

设 \(f_{i,j,x,y}\) 表示达到空格所处位置为 \((i,j)\) 且特殊格位置为 \(x,y\) 的状态的最少步数

一次可以交换空格和相邻格,代价为 \(1\),\(bfs\) 转移即可

但确实时间无法接受

我们想到转移时

当且仅当空格和特殊格相邻时特殊格的位置才可能变

所以我们设 \(f_{i,j,k}\) 表示特殊格位置为 \((i,j)\) 且空格在特殊格 \(k(k\in[0,3])\) 方向的最小步数

那么考虑两种转移

1.不动特殊格,空格从 \(k\) 方向转到 \(l\) 方向

2.空格与特殊格交换

第一种可以 \(bfs\) 预处理出来,记为 \(g_{i,j,k,l}\)

第二种代价为 \(1\)

因为有两种代价,所以我们要 \(spfa\) 转移

交换空格会使空格所在特殊格的方向相反

为方便表示我们用 \({1,2,3,4}\) 表示上下左右

\(Code\)

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std; const int N = 35, INF = 0x3f3f3f3f;
int n, m, q, a[N][N], f[N][N][5], g[N][N][5][5], dis[N][N], vis[N][N][5];
int fx[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
struct node{int x, y, k;}Q[N*N*N]; inline int judge(int x, int y){return (x >= 1 && x <= n && y >= 1 && y <= m && a[x][y]);} inline int bfs(int sx, int sy, int tx, int ty)
{
memset(dis, 0x3f3f3f3f, sizeof dis);
if (!judge(sx, sy) || !judge(tx, ty)) return INF;
dis[sx][sy] = 0;
int head = 0, tail = 1;
Q[1] = node{sx, sy, 0};
while (head < tail)
{
node now = Q[++head];
if (dis[tx][ty] != INF) return dis[tx][ty];
for(register int k = 0; k < 4; k++)
{
int x = now.x + fx[k][0], y = now.y + fx[k][1];
if (judge(x, y) && dis[x][y] > dis[now.x][now.y] + 1)
dis[x][y] = dis[now.x][now.y] + 1, Q[++tail] = node{x, y, 0};
}
}
return dis[tx][ty];
} void prepare()
{
for(register int i = 1; i <= n; i++)
for(register int j = 1; j <= m; j++)
{
int tmp = a[i][j];
a[i][j] = 0;
for(register int k = 0; k < 4; k++)
for(register int l = 0; l < 4; l++)
g[i][j][k][l] = bfs(i + fx[k][0], j + fx[k][1], i + fx[l][0], j + fx[l][1]);
a[i][j] = tmp;
}
} inline int spfa(int sx, int sy, int tx, int ty)
{
memset(vis, 0, sizeof vis);
int head = 0, tail = 0;
for(register int k = 0; k < 4; k++)
{
int x = sx + fx[k][0], y = sy + fx[k][1];
if (judge(x, y)) Q[++tail] = node{sx, sy, k}, vis[sx][sy][k] = 1;
}
while (head < tail)
{
node now = Q[++head];
for(register int k = 0; k < 4; k++)
{
int x = now.x + fx[k][0], y = now.y + fx[k][1];
if (judge(x, y) && f[x][y][k ^ 1] > f[now.x][now.y][now.k] + g[now.x][now.y][now.k][k] + 1)
{
f[x][y][k ^ 1] = f[now.x][now.y][now.k] + g[now.x][now.y][now.k][k] + 1;
if (!vis[x][y][k ^ 1]) Q[++tail] = node{x, y, k ^ 1}, vis[x][y][k ^ 1] = 1;
}
}
vis[now.x][now.y][now.k] = 0;
}
int ans = INF;
for(register int k = 0; k < 4; k++) ans = min(ans, f[tx][ty][k]);
return (ans == INF ? -1 : ans);
} inline int solve()
{
int ex, ey, sx, sy, tx, ty;
scanf("%d%d%d%d%d%d", &ex, &ey, &sx, &sy, &tx, &ty);
if (!judge(sx, sy) || !judge(tx, ty)) return -1;
if (sx == tx && sy == ty) return 0;
memset(f, 0x3f3f3f3f, sizeof f);
int tmp = a[sx][sy];
a[sx][sy] = 0;
for(register int k = 0; k < 4; k++)
f[sx][sy][k] = bfs(ex, ey, sx + fx[k][0], sy + fx[k][1]);
a[sx][sy] = tmp;
return spfa(sx, sy, tx, ty);
} int main()
{
scanf("%d%d%d", &n, &m, &q);
for(register int i = 1; i <= n; i++)
for(register int j = 1; j <= m; j++) scanf("%d", &a[i][j]);
prepare();
for(register int i = 1; i <= q; i++) printf("%d\n", solve());
}

【NOIP2013提高组】华容道的更多相关文章

  1. [NOIP2013 提高组] 华容道 P1979 洛谷

    [NOIP2013 提高组] 华容道 P1979 洛谷 强烈推荐,更好的阅读体验 经典题目:spfa+bfs+转化 题目大意: 给出一个01网格图,和点坐标x,y空格坐标a,b,目标位置tx,ty要求 ...

  2. [NOIP2013提高组]华容道

    这道题第一眼看是暴力,然后发现直接暴力会TLE. 把问题转换一下:移动空格到处跑,如果空格跑到指定位置的棋子,交换位置. 这个可以设计一个状态:$[x1][y1][x2][y2]$,表示空格在$(x1 ...

  3. [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路

    [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...

  4. [NOIP2013提高组] CODEVS 3287 火车运输(MST+LCA)

    一开始觉得是网络流..仔细一看应该是最短路,再看数据范围..呵呵不会写...这道题是最大生成树+最近公共祖先.第一次写..表示各种乱.. 因为要求运输货物质量最大,所以路径一定是在最大生成树上的.然后 ...

  5. 【NOIP2013提高组T3】加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  6. NOIP2013 提高组day2 3 华容道 BFS

    描述 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间. 小 B 玩的华容道与经典的 ...

  7. [NOIP2013] 提高组 洛谷P1979 华容道

    题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间. 小 ...

  8. 洛谷P1979 [NOIP2013提高组Day2T3]华容道

    P1979 华容道 题目描述 [问题描述] 小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次.于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少 ...

  9. 3537. 【NOIP2013提高组day2】华容道(搜索 + 剪枝)

    Problem 给出一个类似华容道的图.\(q\)次询问,每次给你起始点,终止点,空格位置,让你求最少步数 \(n,m\le 30, q\le 500\). Soultion 一道智障搜索题. 弱智想 ...

  10. NOIP2013提高组D2T3 华容道

    n<=30 * m<=30 的地图上,0表示墙壁,1表示可以放箱子的空地.q<=500次询问,每次问:当空地上唯一没有放箱子的空格子在(ex,ey)时,把位于(sx,sy)的箱子移动 ...

随机推荐

  1. 获取联通光猫PT952G的管理员密码

    前言 普通用户的帐号和密码在光猫的背面 输入光猫网关即可跳转到登录界面 但是没有什么权限操作东西,所以我找到了管理员界面 输入 网关+cu.html 即可跳转到管理员界面 例如我这里是http://1 ...

  2. oracle 内置函数(二)字符函数

    主要函数: 大小写转换函数 获取子字符串函数(字符串截取) 获取字符串长度函数 字符串连接函数 去除子字符串函数 字符替换函数 字符串出现次数 字符串按照特定符号拆分多行 一.大小写转换 1.uppe ...

  3. 【大数据面试】【框架】Linux命令、Shell工具、常见Shell脚本(群起脚本、数仓导入)

    一.Linux 1.常用高级命令 ps -ef:查看进程详情,ps -ef|grep dae可以搜索指定进程,-e表示环境变量 ps -au:以用户为主的详细格式,显示进程平均占用资源,不包括cmd列 ...

  4. <三>function函数对象类型的应用示例

    std::function是一组函数对象包装类的模板,实现了一个泛型的回调机制.function与函数指针比较相似,优点在于它允许用户在目标的实现上拥有更大的弹性,即目标既可以是普通函数,也可以是函数 ...

  5. (java 实现开箱即用基于 redis 的分布式锁

    项目简介 lock 为 java 设计的分布式锁,开箱即用,纵享丝滑. 开源地址:https://github.com/houbb/lock 目的 开箱即用,支持注解式和过程式调用 基于 redis ...

  6. vue 项目引入 echarts折线图

    一.components文件下新建 lineCharts.vue <template> <div :class="className" :style=" ...

  7. QT中常用控键

    1.TableWidget类 1.1. 表格属性设置 1.1.1设置行列属性 //设置行列均分 tableWidget->horizontalHeader()->setStretchLas ...

  8. java8新特性学习笔记

    目录 1.速度更快 2.Lambda表达式 2.1.匿名内部类的Lambda转换 2.2.java8内置的四大核心函数式接口 2.3.方法引用和构造器 2.3.1.方法引用 2.3.2.构造器引用 2 ...

  9. Web初级——数组对象常用api

    js数组常用api 连接函数:join("连接符") var array = [1,2,3,4,5] console.log(array.join("+")) ...

  10. P7368 [USACO05NOV]Asteroids G

    题面 贝茜想在 \(N\times N\) 的网格中驾驶她的宇宙飞船.网格中有 \(K\) 个小行星.要使驾驶过程愉快,就必须把这些小行星全部消除. 贝茜有一个武器,可以以一个单位代价消除一行或一列的 ...