摘要:今天带领大家学习自然语言处理中的词嵌入的内容。

本文分享自华为云社区《【MindSpore易点通】深度学习系列-词嵌入》,作者:Skytier。

1 特征表示

在自然语言处理中,有一个很关键的概念是词嵌入,这是语言表示的一种方式,可以让算法自动的理解一些同类别的词,比如苹果、橘子,比如袜子、手套。

one-hot向量

比如我们通常会说:“I want a glass of orange juice.”但如果算法并不知道apple和orange的类似性(这两个one-hot向量的内积是0),那么当其遇到“I want a glass of apple __”时,并不知道这里也应该填写 juice。

如果用特征化的表示来表示库里的每个词,学习它们的特征或者数值。

这样我们就可以选用t-SNE算法来对特征向量可视化,通过观察这种词嵌入的表示方法,最终同类别的单词会聚集在一块,词嵌入算法对于相近的概念,学到的特征也比较类似。

2 词嵌入的使用

参考案例——句中找人名:Jack Li is a teacher.

使用词嵌入作为输入训练好的模型,如果看到一个新的输入:“Jack Li is a farmer.”因为知道teacher和farmer很相近,那么算法很容易就知道Jack Li是一个人的名字。同时,如果遇到不太常见的单词,比如:Jack Li is a cultivator.(假设训练集里没有cultivator这个单词),但是词嵌入的算法通过考察大量的无标签文本,会发现farmer、teacher、cultivator相近,把它们都聚集在一块。这样一来即使只有一个很小的训练集,但是使用迁移学习,把从大量的无标签文本中学习到的知识迁移到一个任务中——比如少量标记的训练数据集的命名实体识别任务。

如何用词嵌入做迁移学习的步骤:

1.先从大量的文本集中学习词嵌入。

2.用这些词嵌入模型把它迁移到新的只有少量标注训练集的任务中,比如说用300维的词嵌入来表示单词,这样就可以用更低维度的特征向量代替原来的10000维的one-hot向量。

3.当在新的任务上训练模型时,只有少量的标记数据集,可以选择不进行微调,而是用新的数据调整词嵌入。

当你的任务的训练集相对较小时,词嵌入的作用最明显,所以它广泛用于NLP领域,但是其对于一些语言模型和机器翻译并不适用。

3 类比推理

词嵌入有一个非常强大的特性就是可以帮助实现类比推理。比如从性别这个特征上来说,如果man应该对应woman,那么算法可以推导出king对应queen。

最常用的相似度函数是余弦相似度,假如在向量u和v之间定义相似度:

如果u和v非常相似,那么它们的内积将会很大,那么该式就是u和v的夹角Φ的余弦值,实际就是计算两向量夹角Φ角的余弦。夹角为0度时,余弦相似度就是1,当夹角是90度角时余弦相似度就是0,当夹角是180度时相似度等于-1,因此角度越小,两个向量越相似。

点击关注,第一时间了解华为云新鲜技术~

带你了解NLP的词嵌入的更多相关文章

  1. DLNg序列模型第二周NLP与词嵌入

    1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法 ...

  2. NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立

    http://3g.163.com/all/article/DM995J240511AQHO.html 选自the Gradient 作者:Sebastian Ruder 机器之心编译 计算机视觉领域 ...

  3. Coursera Deep Learning笔记 序列模型(二)NLP & Word Embeddings(自然语言处理与词嵌入)

    参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距 ...

  4. NLP之基于词嵌入(WordVec)的嵌入矩阵生成并可视化

    词嵌入 @ 目录 词嵌入 1.理论 1.1 为什么使用词嵌入? 1.2 词嵌入的类比推理 1.3 学习词嵌入 1.4 Word2Vec & Skip-Gram(跳字模型) 1.5 分级& ...

  5. NLP︱高级词向量表达(二)——FastText(简述、学习笔记)

    FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...

  6. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  7. cips2016+学习笔记︱简述常见的语言表示模型(词嵌入、句表示、篇章表示)

    在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一 ...

  8. NLP︱高级词向量表达(一)——GloVe(理论、相关测评结果、R&python实现、相关应用)

    有很多改进版的word2vec,但是目前还是word2vec最流行,但是Glove也有很多在提及,笔者在自己实验的时候,发现Glove也还是有很多优点以及可以深入研究对比的地方的,所以对其进行了一定的 ...

  9. DeepNLP的核心关键/NLP词的表示方法类型/NLP语言模型 /词的分布式表示/word embedding/word2vec

    DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NL ...

随机推荐

  1. shellcode 注入执行技术学习

    shellcode 注入执行技术学习 注入执行方式 CreateThread CreateRemoteThread QueueUserAPC CreateThread是一种用于执行Shellcode的 ...

  2. docker-compose概述--翻译

    Overview of Docker Compose 译文 Docker Compose 是一个用来定义和执行多Docker容器程序的工具,如果使用Compose,你将可以使用一个YAML文件来配置你 ...

  3. 【Vue学习笔记】—— vue的基础语法 { }

    学习笔记 作者:oMing vue v-on: 简称 @ <div id='app'> <button v-on:click='Show1'> </button> ...

  4. LibTorch 自动微分

    得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...

  5. MySQL到底有没有解决幻读问题?这篇文章彻底给你解答

    MySQL InnoDB引擎在Repeatable Read(可重复读)隔离级别下,到底有没有解决幻读的问题? 网上众说纷纭,有的说解决了,有的说没解决,甚至有些大v的意见都无法达成统一. 今天就深入 ...

  6. 从Kubernetes Event中提取有效信息

  7. 4.Ceph 基础篇 - 对象存储使用

    文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247485256&idx=1&sn=39e07215 ...

  8. 页面导出Excel

    后端: 1.准备要导出的数据 2.利用XSSFWorkbook对象(workbook)创建工作簿行列等并添加数据 3.响应给前端 例: // 获取响应流 OutputStream output = r ...

  9. 源码学习之MyBatis的底层查询原理

    导读 本文通过MyBatis一个低版本的bug(3.4.5之前的版本)入手,分析MyBatis的一次完整的查询流程,从配置文件的解析到一个查询的完整执行过程详细解读MyBatis的一次查询流程,通过本 ...

  10. 矩阵顺时针打印(C++)(? 为什么不能AC,9度1391)

    #include <iostream> #include <fstream> using namespace std; int a[1000][1000]; void prin ...