一、标准化(Z-Score),或者去除均值和方差缩放

公式为:(X-mean)/std  计算时对每个属性/每列分别进行。

将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。

实现时,有两种不同的方式:

  • 使用sklearn.preprocessing.scale()函数,可以直接将给定数据进行标准化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])
>>> X_scaled = preprocessing.scale(X)
 
>>> X_scaled                                         
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
 
>>>#处理后数据的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0.,  0.,  0.])
 
>>> X_scaled.std(axis=0)
array([ 1.,  1.,  1.])
  • 使用sklearn.preprocessing.StandardScaler类,使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)
 
>>> scaler.mean_                                     
array([ 1. ...,  0. ...,  0.33...])
 
>>> scaler.std_                                      
array([ 0.81...,  0.81...,  1.24...])
 
>>> scaler.transform(X)                              
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])
 
 
>>>#可以直接使用训练集对测试集数据进行转换
>>> scaler.transform([[-1.1., 0.]])               
array([[-2.44...,  1.22..., -0.26...]])

二、将属性缩放到一个指定范围

除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。

使用这种方法的目的包括:

1、对于方差非常小的属性可以增强其稳定性。

2、维持稀疏矩阵中为0的条目。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> X_train = np.array([[ 1., -1.2.],
...                     [ 2.0.0.],
...                     [ 0.1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       0.        1.        ],
       [ 1.        0.5       0.33333333],
       [ 0.        1.        0.        ]])
 
>>> #将相同的缩放应用到测试集数据中
>>> X_test = np.array([[ -3., -1.4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5       0.        1.66666667]])
 
 
>>> #缩放因子等属性
>>> min_max_scaler.scale_                            
array([ 0.5       0.5       0.33...])
 
>>> min_max_scaler.min_                              
array([ 0.        0.5       0.33...])

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min,))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min

三、正则化(Normalization)

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

             p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。

1、可以使用preprocessing.normalize()函数对指定数据进行转换:

1
2
3
4
5
6
7
8
9
>>> X = [[ 1., -1.2.],
...      [ 2.0.0.],
...      [ 0.1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
 
>>> X_normalized                                     
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

2、可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:

1
2
3
4
5
6
7
8
9
10
11
12
>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
 
>>>
>>> normalizer.transform(X)                           
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])
 
>>> normalizer.transform([[-1.1., 0.]])            
array([[-0.70...,  0.70...,  0.  ...]])

补充:

【原】关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化的更多相关文章

  1. 关于使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并处以其方差.得到的结果是,对于每个属 ...

  2. 使用sklearn进行数据预处理 —— 归一化/标准化/正则化

    一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/std  计算时对每个属性/每列分别进行. 将数据按期属性(按列进行)减去其均值,并除以其方差.得到的结果是,对于每个属 ...

  3. [Scikit-Learn] - 数据预处理 - 归一化/标准化/正则化

    reference: http://www.cnblogs.com/chaosimple/p/4153167.html 一.标准化(Z-Score),或者去除均值和方差缩放 公式为:(X-mean)/ ...

  4. 【Sklearn系列】使用Sklearn进行数据预处理

    这篇文章主要讲解使用Sklearn进行数据预处理,我们使用Kaggle中泰坦尼克号事件的数据作为样本. 读取数据并创建数据表格,查看数据相关信息 import pandas as pd import ...

  5. Python: sklearn库——数据预处理

    Python: sklearn库 —— 数据预处理 数据集转换之预处理数据:      将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化.      原因:数据集的标准化(服从均值为 ...

  6. Python数据预处理—归一化,标准化,正则化

    关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的 ...

  7. 【sklearn】数据预处理 sklearn.preprocessing

    数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization ...

  8. 数据预处理:标准化(Standardization)

    注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: sc ...

  9. sklearn中的数据预处理----good!! 标准化 归一化 在何时使用

    RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimiz ...

随机推荐

  1. 那些过目不忘的H5页面

    原文链接:http://isux.tencent.com/great-mobile-h5-pages.html 从引爆朋友圈的H5小游戏<围住神经猫>,到颠覆传统广告的大众点评H5专题页& ...

  2. SharePoint 2013 工作流之Visual Studio开发示例篇

    SharePoint 2013引用了WF4.0 Foundation,支持使用Designer和Visio进行设计,但是功能受限,而Visual Studio可以开发功能更加丰富的工作流,下面我们简单 ...

  3. Android github 快速实现多人协作

    前言:最近要做github多人协作,也就是多人开发.搜索了一些资料,千篇一律,而且操作麻烦.今天就整理一下,github多人协作的简单实现方法. 下面的教程不会出现:公钥.组织.team.pull r ...

  4. iOS Class 使用NSProxy和NSObject设计代理类的差异

    经常发现在一些需要使用消息转发而创建代理类时, 不同的程序员都有着不同的使用方法, 有些采用继承于NSObject, 而有一些采用继承自NSProxy. 二者都是Foundation框架中的基类, 并 ...

  5. IE10 和 Chrome50 对日期 new Date() 支持的区别

    IE10 和 Chrome50 对日期 new Date() 支持的区别: new Date('2016-06-18'); // IE10 不通过.Chrome 通过 new Date('2016/0 ...

  6. Git:Git初体验——Git安装配置

    作为即将成为一个程序员的男人,一直在听别人说Git多好多好,之前也随便了解了一些,但是始终没有决心去学会.现在大四了,只有毕设和一门开学六七周只去过一次课的全员必修课外,也没有什么事情做,何不去做这些 ...

  7. Java 理论与实践: 正确使用 Volatile 变量

    Java 语言中的 volatile 变量可以被看作是一种 "程度较轻的 synchronized":与 synchronized 块相比,volatile 变量所需的编码较少,并 ...

  8. Webservice详解

    WebService是什么? 1. 基于Web的服务:服务器端整出一些资源让客户端应用访问(获取数据) 2. 一个跨语言.跨平台的规范(抽象) 3. 多个跨平台.跨语言的应用间通信整合的方案(实际) ...

  9. 智力火柴游戏Android源码项目

    该游戏源码是一个智力火柴游戏源码,游戏分为难.中.易三种模式,通过对火柴的移动来实现等式分成立,具有极好的市场价值和参考意义. 源码下载: http://code.662p.com/view/9741 ...

  10. gcc中__builtin_return_address和__VA_ARGS__

    — Built-in Function: void * __builtin_return_address (unsigned int level) This function returns the ...